Cuernavaca Gathering on Transport at the Nanoscale
05 - 09 November 2018

1) B. Baumeier: Electronic transport and conversion processes in molecular materials: a multiscale challenge for electronic structure theory
2) T. Stuyver: Diradical Character as a Guiding Principle for the Insightful Design of Molecular Nanowires with an Increasing Conductance with Length
3) J. Garcia: The kernel polynomial method for spintronics and quantum transport: Toward quantum simulation of macroscopic devices
4) I. Garzón: Electronic structure of organic molecules and ligand-protected metal clusters: A first step toward the understanding of their conductive behavior
5) A. Martinez: Phenomenological approach to transport through three-terminal disordered wires
6) J. Gonzalez: Resonant thermoelectric transport in DNA-like systems
7) M. Brandbyge: Electron-phonon effects and signals in transport: From molecules to graphene
8) P. Stegmann: Full counting statistics of electron transport in nanoscale systems
9) J. Franco: From the Dirac oscillator to the graphene strips, microwave experiments
10) P. Majari: From Klein to anti-Klein tunneling in graphene tuning the Rashba spin-orbit interaction or the bilayer coupling
11) G. Naumis: Valley engineering by strain in Kekulé-distorted graphene
12) V. Gopar: Transmission of Anomalously and Anderson-Localized Waves and Intensity Inside Random Media
13) C. Herrmann: Spin-dependent effects in molecular and nanoscale electron transport: challenges for first-principles descriptions
14) T. Stegmann: Centrosymmetry, current vortices and energy distribution functions
15) E. Mendoza & E. Paredes: Electron transport in graphene heterojunctions
16) Y. Betancur: Partial positive refraction in asymmetric Veselago lenses of uniaxially strained graphene
17) E. Kleinherbers: Revealing attractive electron-electron interaction in a quantum dot by full counting statistics
18) J. Palma: Structural Modifications and Quantum Interference to Tune Rectification in Molecular Junctions
19) I. Guzman: Theoretical Studies on the Length Dependence of Molecular Rectification
20) R. Peña: Theoretical Studies of Coherent Transport in p-p Stacking Systems
21) M. Brandbyge: Electron transport in stacked and gated 2D nanostructures: Lessons from calculations
22) L. Foa-Torres: Topological states and anomalous localization in non-Hermitian systems
23) N. Szpak: How General Relativity Helps to Design Valleytronics Nanodevices
24) L. Serkovic: Graphene transistors using TiO2
25) A. Gamboa: Helium Nanodroplets at Ultra Cold Temperatures. The Problem of Excited States Calculation
26) V. Mujica: Electron Transport in Molecular Junctions and Spin-dependent Chemistry
<table>
<thead>
<tr>
<th>Time</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00 am</td>
<td>Coffee Break</td>
<td>11:00 am</td>
<td>Coffee Break</td>
<td>12:00 am</td>
<td>1:00 pm</td>
</tr>
<tr>
<td>12:00 pm</td>
<td>Lunch</td>
<td>12:00 pm</td>
<td>1:00 pm</td>
<td>1:30 pm</td>
<td>Lunch</td>
</tr>
<tr>
<td>2:00 pm</td>
<td>3:00 pm</td>
<td>4:00 pm</td>
<td>5:00 pm</td>
<td>6:00 pm</td>
<td>7:00 pm</td>
</tr>
</tbody>
</table>