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PLAN

Lecture 1: Decoherence and the quantum origin of the classical
world. Evolution of quantum open systems. Quantum Brownian
motion as a paradigm. Master equation.

Lecture 2: General results on Dynamics and Thermodynamics of
linear quantum open systems. Emergence of the laws of
thermodynamics. Decoherence in Quantum Brownian Motion.

Lecture 3: Decoherence timescales. Pointer states. Decoherence and
disentanglement. Different dynamical phases for the behavior of
quantum correlations in quantum open systems.

Lecture 4: Decoherence in quantum information processing. How
to fight against decoherence? How to characterize decoherence?
Quantum process tomography (QPT).

Lecture 5: New methods for Quantum Process Tomography.
“Selective and efficient QPT”. Theory and experimental
implementation with single photons.



Lecture 1: The Good Side of Decoherence

Enemy for
quantum
information
processing

Colaborations with: W. Zurek (LANL), M. Saraceno (CNEA), D. Mazzitelli
(UBA), D. Dalvit (LANL), J. Anglin (MIT), R. Laflamme (IQC), D. Cory (MIT),
G. Morigi (UAB), S. Fernandez-Vidal (UAB), F. Cucchietti (LANL),

Current/former students: D. Monteoliva, C. Miquel (UBA), P. Bianucci (UBA, UT), L. Davila (UEA, UK),
C. Lopez (UBA, MIT), A. Roncaglia (UBA), C. Cormick (UBA), A. Bendersky (UBA), F. Pastawski
(UNC), C. Schmiegelow (UNLP, UBA), N. Freitas (UBA), G. Petrungaro (UBA), E. Martinez (UBA)

Review: J.P.Paz and W. Zurek quant-ph/0010011.




FJ DECOHERENCE: AN OVERVIEW

« DECOHERENCE AND THE QUANTUM-CLASSICAL TRANSITION: THE PROBLEM

— HILBERT SPACE IS HUGE!:
ALL STATES ARE ALLOWED
— —> CLASSICAL STATES: A
(VERY!) SMALL SUBSET

Albert Einstein (1954) in a letter to Max Born:

“Let ¥ and 9> be two solutions of the same
Scrodinger equation. When the system is a macro -
system and when ®: and ¥ are “narrow” with
respect to the macro coordinates then in by far the
largest number of cases this is no longer true for
(g@1 + @, )/ \2 . Narrowness with respect to macro -
coordinates is not only independent of the
principles of quantum mechanics but, moreover, it
is incompatible with them.”




FJ DECOHERENCE: AN OVERVIEW

« HOW TO EXPLAIN THE ORIGIN OF A CLASSICAL WORLD FROM A QUANTUM
SUBSTRATE?: WHY IS IT THAT SOME SYSTEMS ARE ALWAYS FOUND IN
“CLASSICAL STATES"? (“NARROW” WITH RESPECTO TO MACRO-COORDINATES)

e DECOHERENCE PARADIGM: CLASSICALITY IS AN EMERGENT PROPERTY

e DECOHERENCE: DYNAMICAL SUPRESSION OF QUANTUM SUPERPOSITIONS.
MOST STATES ARE HIGHLY UNSTABLE. A PREFERRED SET OF STABE STATES
EMERGES (IT IS DINAMICALLY SELECTED BY THE ENVIRONMENT).

e CLASSICALITY IS INDUCED ON SUBSYSTEMS BY THE ENVIRONMENT

« BASIC PHYICAL IDEA BEHIND DECOHERENCE IS VERY SIMPLE: SYSTEM-
ENVIRONMENT INTERACTION CREATES CORRELATIONS

« DECOHERENCE IS INDUCED BY THE CONTINUOUS MONITORING BY THE
ENVIRONMENT: A RECORD OF THE RELATIVE STATE OF THE SYSTEM IS
IMPRINTED IN THE ENVIRONMENT.

 ISN'T THIS TOO SIMPLE? (HOW MUCH CAN WE BUY WITH THIS SIMPLE IDEA?)
« ENOUGH TO UNDERSTAND THE ORIGIN OF CLASSICAL FROM QUANTUM




!@ DECOHERENCE: AN OVERVIEW

LAST DECADE: MANY QUESTIONS ON DECOHERENCE WERE ADDRESSED AND
ANSWERED

e NATURE OF POINTER STATES: QUANTUM SUPERPOSITIONS DECAY INTO MIXTURES
WHEN QUANTUM INTERFERENCE IS SUPRESSED. WHAT ARE THE STATES SELECTED BY THE
INTERACTION? POINTER STATES: THE MOST STABLE STATES OF THE SYSTEM, DYNAMICALLY
SELECTED BY THE ENVIRONMENT: W.Zurek, S. Habib & J.P. Paz, PRL 70, 1187 (1993), J.P. Paz & W.
Zurek, PRL 82, 5181 (1999)

* TIMESCALES: HOW FAST DOES DECOHERENCE OCCURS? J.P. Paz, S. Habib & W. Zurek, PRD
47, 488 (1993), J. Anglin, J.P. Paz & W. Zurek, PRA 55, 4041 (1997)

DECOHERENCE FOR CLASSICALLY CHAOTIC SYSTEMS: W. Zurek & J.P. Paz, PRL 72,
2508 (1994), D. Monteoliva & J.P. Paz, PRL 85, 3373 (2000).

e CONTROLLED DECOHERENCE EXPERIMENTS: S. Haroche et al (ENS) PRL 77, 4887
(1997), D. Wineland et al (NIST), Nature 403, 269 (2000), A. Zeillinger et al (Vienna) PRL 90 160401 (2003),

e ENVIRONMENT ENGENEERING: J.P. Paz, Nature 412, 869 (2001)
« ENTANGLEMENT DYNAMICS: J.P. Paz, PRL 100, 2200401 (2008)




@) A MODEL: QUANTUM BROWNIAN MOTION

QUANTUM BROWNIAN MOTION (QBM): Paradigmatic model for a quantum open system

(realistic in many cases: Caldeira-Leggett, etc)

» System: Particle (harmonic oscillator)
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, Environment: Collection of harmonic oscillators

Interaction: bilinear

Our aim: Study evolution of the state of the system

‘State of the system’: Reduced density matrix 0= 7/ 7o (0sr)

Asumption (standard): Uncorrelated initial state 7=0  p(0) = py(0) ® p,(0)

TWO “PARAMETERS”: 1) INITIAL STATE OF PROBLEM IS EXACTLY SOLVABLE!. USEFUL TOOL:

ENVIRONMENT (TEMPERATURE T), 2) EXACT MASTER EQUATION (EVOLUTION EQUATION

SPECTRAL DENSITY OF ENVIRONMENT FOR THE REDUCED DENSITY MATRIX); B.L. Hu, J.P.
Ae)= B S 2w —w,) Paz and Y. Zhang, Phys. Rev. D42, 3243 (1992)




@) A MODEL: QUANTUM BROWNIAN MOTION

GENERAL FORM OF THE MASTER EQUATION (VALID FOR ALL VALUES OF INITIAL
TEMPERATURE OF ENVIRONMENT AND FOR ALL SPECTRAL DENSITIES)

p=-d o} ()| x{pp} | 20| v v o]} /(0|2 [2.0]]

DERIVATION OF MASTER EQUATION FOR QBM (you should do this once in your lifetime!)

1) START FROM SCHROEDINGER EQUATION FOR THE SYSTEM+ENVIRONMENT
o,=—i[4,.p,]
2) GO TO THE INTERACTION PICTURE
H=H +H, ; U =exp(- z’Hz‘) . D, —[/_lpf[/ . H =U'H U

ﬁ]’=_l.[érint9b7’ e pT(Z) Efdf fdf 7[ 1nt 1nt(f )pr(f )]_

n=0 ¢,

3) USE SECOND ORDER PERTURBATION THEORY

p,(9)=p,(2,)+- fcz’f[ ()04 ] fd;fd; [H (M2, ),ﬁ,(fo)]]




@) A MODEL: QUANTUM BROWNIAN MOTION

4) TAKE TIME DERIVATIVE AND TRACE OVER THE ENVIRONMENT

! Zy

0,0 () [ [0, )2 0] J s f e[ (i) [0, (0]
b )= 70 @] [ ()10
p=1r,(p,)= p(7)= 1;.frg[ﬁm(f)g p.)] fa’flfrg[fim(f) (7.6} p(4)]]

5) ASSUME SYSTEM AND ENVIRONMENT (:A\RE INITIALLY SEPARABLE

(4)® (%]

[[5’;

int

5= A 3(0)© ()] [ 7 7,0

6) TRICK: REPLACE THE[NITIAL DENSITY MA SYSTEM IN R.H.S. OF EQUATION!

p()= P(20)+ % S 075, [, () 2(2)® P ()]



@) A MODEL: QUANTUM BROWNIAN MOTION

7) NOTICE THAT THE EQUATION (VALID TO SECOND ORDER) IS LOCAL IN TIME!

5(7)= % 7, [ 72, (2P (1) ® p,.(0)]- f an7r | 7, (D 7. (2} p()® p..(0)]
+ jqurE[Ent(f), T/”E([ﬁmt(fl )o(7)® f)E(O)])® bE(O)]

8) ASSUME SIMPLE INTERACTION BETWEEN SYSTEM AND ENVIRONMENT AND
GO BACK TO SCHRODINGER PICTURE FOR THE SYSTEM

A, E 5,®E  Uy=exp(-ild) ; p=U;'pl,

p()="[#,p(0)}s 1; £ D [ i

! 2%
< (Cme (b )] {52 {S - o} I vie o) 8[54 - ()]
R ROV RN O EES A (RO PAGYA D))
Ve (162) = 2 75 ONED £ 77, (0 (0) £, (0,(0) £.(2))




@) A MODEL: QUANTUM BROWNIAN MOTION

9) NOW CONSIDER THE QUANTUM BROWNIAN MOTION MODEL (bosonic environment)

| :
My =1 ® E)W/( L (1) = q,(r) = g, cos(w,t) + P, sinfw,7)
k

0,(0)=exp(-27, 14,7)1Z 5 = (""" 1)

S
Fo={7,)=0 ; nkk’(f’f)=5/f/r'2 “sin (w,(7~ 7))

kK

cos(a),f(f— l’))(l + 2/@()

L

2

Ve (faf)= 6/4(' 210
Vaadls

10) REWRITE MASTER EQUATION ALMOST IN FINAL FORM

0= 177000} s Conto L) o0} e[ ]

2

sin(w, (¢-7)) 3 v E

k

(a)k(l—f')XH 2n,) ; E

k

1=,

- 2ma)

2m 0, 2mw,




@) A MODEL: QUANTUM BROWNIAN MOTION

11) REPLACE x(t) IN THE R.H.S. OF THE MASTER EQUATION

p0)= [0 [t Conte L) o0} Jo () e o]

1

x(1) = xcos(Qr) + o psin(Qr)

[~

p=-ilH,p]- ’j o0’ ()| x{x.p}- (D[ x{pp} - Do) x[vp ]} A D] 220

Time dependent coefficients are determined by spectral density and initial temperature

COMMENTS:

1) EQUATION WAS DERIVED TO SECOND ORDER IN THE INTERACTION BUT IT IS IN
FACT AN EXACT EQUATION VALID TO ALL ORDERS.

B.L. Hu, J.P. Paz and Y. Zhang, Phys. Rev. D42, 3243 (1992)

2) IN SOME CASES ANALYTIC EXPRESSIONS FOR THE TIME DEPENDENT
COEFFICIENTS CAN BE OBTAINED




@) A MODEL: QUANTUM BROWNIAN MOTION

Interpretation of the first two terms (renormalization and damping)

p= - l.[HS + géwz (f)xz,p}— l')/(f) [X, {pap}]_ D(f) [X,[X, p]]_f(f) [X,[p, p]]

. Y . . . Y .
1 Dressing (renormalization) Damping (relaxation)

P) = =ms2 (1)x) =27 (D{p) 0 (r) =2 [ di'cos(@mis)
/ - _ } / B .‘ ¢
\x) <p> " Y1) = L [ dt'sin(Qn(t"
Q: () =% + dw?(r) M2y

2 )

n(r) = [ dwsin(wr)d(w)

 Normal friction (constant y(72)): ohmic environment

[T ———



@) A MODEL: QUANTUM BROWNIAN MOTION

Interpretation of the last two terms (diffusion)

p= B fl:HS + géwz (f)xz,p}— l')/(f) [X, {pap}]_ D(f) [X,[X, p]]_f(f) [Xs[ps p]]

Y Y . .
1 Diffusion (Decoherence)  Anomalous Diffusion
d p”>

= _]fngi (r)<xp + p,x> — 4';/([)\/‘[?2> + 2.D(r)

dit
/. ) 2.
d\-‘(]J -+ ]).l> _ 2@ _ 2]2‘192(1)<X2> . 2.‘\/(’)<,€p + PX> — 2[(1)
de m
d -x2> 1
dr _m (xp + px)

» Diffusion coefficients (D(t) and f(t)) depend on spectral density and temperature

: L - \ \ = _L [ V'l 1 \ e _ r, - -~ i
D(f) = { dr'cos@r W) f(O=- { dr'sin(Qr vy  v(e) = { dwcos(wt)coth(kT)J(w)

2 D
o4 —
F oy
- D
L2, X > iy




@) A MODEL: QUANTUM BROWNIAN MOTION

. . w A @
Ohmic environment Hwy=2my = = = 2my " A1)y
TN +o” 4

» Diffusion coefficients (D(t) and f(t)) have initial transient and
approach temperature-dependent asymptotic values

1A

\
&

W

\/
d—difusion
O R, N WA
I\H!HH“
n |
d—difusion
= N

f-difusion
f—difusion




@) A MODEL: QUANTUM BROWNIAN MOTION

Ohmic environment in a high temperature initial state

J(w) =2myw (o <T).

(y—=v. D)= 2mvk,T. [(1)—>0
kyl >> h<2 Y ( ) g

Approximate master equation (ohmic, high temperature)

p=— A0} v[x{ro}]- Olx[xe]]

Use this to investigate:
1)  What is the decoherence timescale?,

2) What are the pointer states?




SUMMARY

DECOHERENCE IS AN ESENTIAL PROCESS TO
UNDERSTAND THE QUANTUM CLASSICAL TRANSITION

PARADIGM: CLASSICALITY IS AN EMERGENT PROPERTY
INDUCED ON SUBSYSTEMS BY THEIR ENVIRONMENTS

TOOLS TO STUDY DECOHERENCE: PHYSICS OF
QUANTUM OPERN SYSTEMS

MASTER EQUATION FOR QUANTUM BROWNIAN MOTION.
DERIVATION (PERTURBATIVE) AND PROPERTIES

NEXT CLASS: GENERAL RESULTS FOR LINEAR SYSTEMS
(DYNAMICS AND THERMODYNAMICS)
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PLAN

Lecture 1: Decoherence and the quantum origin of the classical
world. Evolution of quantum open systems. Quantum Brownian
motion as a paradigm. Master equation.

Lecture 2: General results on Dynamics and Thermodynamics of

linear quantum open systems. Emergence of the laws of
thermodynamics. JOINT WORK WITH ESTEBAN MARTINEZ
arXiv:1207.4256

Lecture 3: Decoherence in Quantum Brownian Motion.
Decoherence timescales. Pointer states. Decoherence and
disentanglement. Different dynamical phases for the behavior of
quantum correlations in quantum open systems.

Lecture 4: Decoherence in quantum information processing. How
to fight against decoherence? How to characterize decoherence?
Quantum process tomography (QPT).Lecture 5: New methods for
Quantum Process Tomography. “Selective and efficient QPT”.
Theory and experimental implementation with single photons.



@) GENERAL RESULTS FOR LINEAR SYSTEMS

EVOLUTION OF THE REDUCED DENSITY MATRIX (MAP)

P =l

piﬂ— pow‘=A(pm) —pm/z W.
=

GAUSSIAN STATE \ ‘ GAUSSIAN STATE

‘ LINEAR SYSTEMS (QUADRATIC HAMILTONIANS SUCH AS QBM) \

A(x, x';xo,x'o) = (x\AQxO ><x’0 )x'>
pouf(’x9’x') = f dx,dx A(Xax';xoax'o )pouf(‘XO9 X

LINEAR SYSTEMS: GAUSSIAN PROPAGATOR

A(x, X' x,, x'o) = exp (151/I/E+ b, X,5+ D, X, + 16, X &, ) X

X =x+.x

=X —X

exp (4152 +a,E +a,EE + o X +c, X, + c, XX, )/N




@) GENERAL RESULTS FOR LINEAR SYSTEMS

LINEAR SYSTEMS: GAUSSIAN PROPAGATOR

A(x, x';xo,x'o) = exp (ZZI/I/E+ b, X, 5+ ib, XE, + 15, X, §, ) X[ [X = x+ &
exp (4152 +a, & +a,EE, + c, X +c, X, + c, XX, )/N E=x—-2x

EXTRA CONDITIONS IMPOSE CONSTRAINTS ON COEFFICIENTS

b..b..b..b, —=regl
HERMITICITY ‘ ety

a,.a,.a; —>real
XEX,&)=A(X-EX,,-E)

C,L=Cy) =C3 = 0
TRACE PRESERVING ‘ N =2m/b,
[ax A(x0:x,.8)=0(§,

A(x, X' x,, x'o) = exp (zblzl/E + 0, X, 5+ b, X§, + 16, X &, ) X
exp (dl§2 + @,E + a,EE, )/ 27 h,
POSITIVITY W) [rc/azions benween a, and b,




@) GENERAL RESULTS FOR LINEAR SYSTEMS

TWO MAIN RESULTS FOLLOWS DIRECTLY FROM

A(x, X' x,, x'o) = eXp (zblzl/E + 0, X, 5+ b, X§, + 16, X &, ) X
exp (dl§2 + @,E + a,EE, )/ 27 h,

RESULT 1; MASTER EQUATION!

poul(’x9’x') = fdxodx'o A(Xax';xoax'o )pouf(’XO’x'Oj

| - R
A(x,x';x '0) =|ibXE+ib, X E+ib,XE +ib X E +aE +a,E +a,EE - N)A(x ,x‘;xo,x'o)

A
j—X = (ib,E+ib,E,)A
IN

= (ib1X —+ inXO —+ 2a2§+ a3§O)A

Y

MASTER EQUATION!!!!

9E




@) GENERAL RESULTS FOR LINEAR SYSTEMS

THEOREM: GAUSSIANITY (LINEARITY), HERMITICITY AND PRESERVATION OF
TRACE IMPLY THAT THERE IS A MASTER EQUATION

2

P
H. =
B 2M, (1)

p=—i[H,.p]- iy x{p.p}|- 7O p.{x.0}]-
- D[ x[x.p]]- D[ pLp.p]]| - F®|x[r.r]]

2 M ()2 (1)x°

COEFFICIENTS OF THE MASTER EQUATION DEPEND ON THOSE OF THE
PROPAGATOR (i.e., a’s and b’s).

DETERMINED BY MICROSCOPIC MODELS

QUANTUM BROWNIAN
MOTION (QBM)

i

y(1) =0 = D(1); M, (t) = m

RESULT 2: EXACT SOLUTION (SIMPLE)




@) GENERAL RESULTS FOR LINEAR SYSTEMS
A(x, X' x,, x'o) = exp (sz/I/E+ b, X, 5+ D, X§, + 16, X &, ) X

exp (dl§2 + @,E + a,EE, )/ 27 h,
EXACT SOLUTION: SIMPLE EXPRESSION FOR CHRACTERISTIC FUNCTION

Aout) = Tr( D) p(t)); o = (5) Dla) = exp(i( pO - qﬁ)/h)

dat) = fD(1)0) x exp(—%(xTZ(t)a)
o[ gy [ 20T

®,() @, 2, (1) Z,()

RESULTS 1 AND 2 ARE VERY GENERAL

VALID FOR ARBITRARY LINEAR NETWORKS COUPLED WITH
ARBITRARY BOSONIC RESERVOIRS!!




@) GENERAL LINEAR NETWORK

5)
H = Ezzckl X, rke S1

e=1i€S, k=1

W‘ HAMILTONIAN OF NETWORK

EACH ENVIRONMENT INTERACTS WITH
A DIFFERENT REGION OF THE SYSTEM

=3[0 S

Jj=1

nk e

HEH EE

e=| k=1

T mkwk rke

HAMILTONIAN OF THE R-ENVIRONMENTS

EACH ENVIRONMENT HAS DIFFERENT SPECTRAL
DENSITY AND TEMPERATURE

R R M

(o) zl EE i, 5 a)-a)k) I;e=1..R

e=1 e=1 k=1 mkwk

=l
Il

awl
Il

1

N x N matrices, N =number of degreesof freedom || \x,

P
P

Py




@) GENERAL RESULTS FOR LINEAR SYSTEMS

MASTER EQUATION FOR GENERALIZED QBM

p= _ i[HR ,P] _ i)/ij(t) [xi’{pj9p}] _ Dij(t)l:xﬂ[xj’p]] _fij(t) [xi’[pj’p]]

1 _ .
R Sy +5xTVR(t)x

EXACT SOLUTION FOR FOR GENERALIZED QBM
1

o) = (1) 0) x exp(_EaTz(t)a) o (p)
q)(t):(q)“(t) <I>01(t)) ; 2(t)=(200(t)

(I)IO(t) (I)ll(t)

EXPLICIT FORM OF THE TIME DEPENDENT COEFFICIENTS CAN BE OBTAINED




@) GENERAL RESULTS FOR LINEAR SYSTEMS

NOISE AND DISIPATION KERMELS (NxN MATRICES)

ult) - jda) I(acj)) cos(wt); v(z) = izjdw 1“(w) cos(wt) COth(Zk(:T

y

SOLVE INTEGRO-DIFERENTIAL EQUATION

G(1) + Vo G(e) + 2 [ dr' (e =) G(r) = 0: G(0) =0,G(0) = 1; Vi =V —244(0)

THEN THE COEFFICIENTS OF THE EXACT SOLUTION ARE

O(r) = GEt) (.;(t)) ; Z(t)=(200(t) 2?11((3)

> (1) = jjdtldtz G (t,)v(1, - t,) G™(1,)
0O O




@) GENERAL RESULTS FOR LINEAR SYSTEMS

VERY USEFUL TO STUDY EMERGENCE OF THERMODYNAMICAL LAWS!
SOLVE EQUATION USING LAPLACE’'S TRANSFORM

~ A . -1 . r s’
G(s) = (521 + V, +25u(s)) . ls) = {da) I(w) 2 o?

WE WILL ANALYZE THE STATIONARY REGIME (LONG TIMES)
1

Aat) = fD(1).0) x exp(—EaTZ(t)(x) %exp(—%(xTZ(OO)a)

q>(oo)=(G(°°) (.;(oo))sz2N=o; 2(00)=(200(00) ?I(OO))ZNM

G() G() Z0() Z;()

5 (o0) = me(zdw o™i Glie) o) é(_iw))

nm

v(w)=§1<e>(w)coth( ® )

2k, T,

e=1




@) GENERAL LINEAR NETWORK

ENERGY CHANGE OF SYSTEM

d(Hy)

= Tr(pH, ) = Tr(V, 2, (o E Y (V2o (o0

)

dt a=1i€§,
W@ FIRST LAW OF THERMODYNAMICS

d<HR>. — iQﬂ; Qa = T}"(PSaVRZIO(OO)); Z10(00) - <xpT>

Qa = Heat from S, to system; P; =Projector onto §,

. R > a)
= d th
0, Z{ wwQ,,(w)co (2]{37;)
Q,, (a)) = Heat transfer matrix Qa,b (a) ) <0, a=b

o) {1 et o) )
0,,(w) = 2aTr{1"”G(iw)I"'G(-iw)) Y 0,,(w)=0

S




@) GENERAL LINEAR NETWORK

SECOND LAW: HEAT FLOWS FROM HOT TO COLD

iQa,b<w> _

)

HOTTEST — 2k, T,

Wm O - f Jo> o EQab (coth(zka)Tn) -coth(L))

RESERVOIR if T, sz,Vb=>Q =0l!; szasTb,Vb=>Qa50!!!;
ALWAYS INJECTS

ENERGY (COOLS || ﬁ E Q
DOWN)
COLDEST RESERVOIR RESULTS CAN BE GENERALIZED:
ALWAYS EXTRACTS

1) MULTIPLE ENVIRONMENTS IN EACH REGION

ENERGY (HEATS UP)

2) OVERLAPPING REGIOS

NO-GO THEOREM FOR LINEAR QUANTUM ABSORPTION REFRIGERATOR!! (QAR were
proposed by Kosloff et al -PRL, 2012- using nonlinear system: non-linearity is essential!!!)




@) GENERAL LINEAR NETWORK

%%

THIRD LAW (UNATTAINABILITY OF ZERO TEMPERATURE)

SIMPLEST CASE: TWO RESERVOIRS WITH
IDENTICAL SPECTRAL DENSITIES

[(w) =y 0fw) M3,

LOW
TEMPERATURES

. W @
T ]

: ( , BT W
0 =2n yz{da) 0" 0*(0)|Glio) (COth(Zk -

THIRD LAW IS OBTAINED
FOR SUB-OHMIC
(p<1), OHMIC (p=1)

AND SUPER-OHMIC

(p>1)
ENVIRONMENTS

: _ _ T +T
Q1=CT1+2PAT; T= 122;

AT=T,-T,

P
—S—Q—C'T”’ATeo if p=0
dt T




SUMMARY

GENERAL RESULTS FOR ARBITRARY LINEAR OPEN
NETWORKS: MASTER EQUATION AND EXACT SOLUTION

STUDY LONG TIME STATIONARY LIMIT

DERIVE THE LAWS OF THERMODYNAMICS

NO-GO THEOREM FOR QUANTUM ABSORPTION
REFRIGERATOR

THIRD LAW IMPOSES CONSTRAINT ON SPECTRAL
DENSITY (LOW FREQUENCIES)
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PLAN

Lecture 1: Decoherence and the quantum origin of the classical
world. Evolution of quantum open systems. Quantum Brownian
motion as a paradigm. Master equation.

Lecture 2: General results on Dynamics and Thermodynamics of

linear quantum open systems. Emergence of the laws of
thermodynamics. E.A. MARTINEZ & J.P.P. arXiv:12074256

Lecture 3: Decoherence in Quantum Brownian Motion.
Decoherence timescales. Pointer states. Decoherence and
disentanglement. Different dynamical phases for the behavior of
quantum correlations in quantum open systemes.

Lecture 4: Decoherence in quantum information processing. How
to fight against decoherence? How to characterize decoherence?
Quantum process tomography (QPT).

Lecture 5: New methods for Quantum Process Tomography.
“Selective and efficient QPT”. Theory and experimental
implementation with single photons.



!@ DECOHERENCE: AN OVERVIEW

« DECOHERENCE AND THE QUANTUM-CLASSICAL TRANSITION:
— YES: HILBERT SPACE IS
HUGE, BUT MOST STATES
E UNSTABLE!! (DECAY
VERY FAST INTO MIXTURES)

— —> CLASSICAL STATES: A
(VERY!) SMALL SUBSET.
THEY ARE THE
POINTER STATES OF
THE SYSTEM
DYNAMICALLY CHOSEN
BY THE ENVIRONMENT

*POINTER STATES: W.Zurek, S. Habib & J.P. Paz, PRL 70, 1187 (1993), J.P. Paz & W. Zurek, PRL 82, 5181 (1999)

*TIMESCALES: J.P. Paz, S. Habib & W. Zurek, PRD 47, 488 (1993), J. Anglin, J.P. Paz & W. Zurek, PRA 55, 4041
(1997)

«CONTROLLED DECOHERENCE EXPERIMENTS: Zeillinger et al (Vienna) PRL 90 160401 (2003), Haroche et al
(ENS) PRL 77, 4887 (1997), Wineland et al (NIST), Nature 403, 269 (2000).




@) A MODEL: QUANTUM BROWNIAN MOTION

Ohmic environment in a high temperature initial state

J(w) =2myw (o <T).

(y—=v. D)= 2mvk,T. [(1)—>0
kyl >> h<2 Y ( ) g

Approximate master equation (ohmic, high temperature)

p=— A0} v[x{ro}]- Olx[xe]]

Use this to investigate:
1)  What is the decoherence timescale?,

2) What are the pointer states?




@) DECOHERENCE IN QUANTUM BROWNIAN MOTION

DECOHERENCE IN QUANTUM BROWNIAN MOTION: MAIN RESULTS ARE BETTER
SEEN REPRESENTING THE STATE IN PHASE SPACE VIA WIGNER FUNCTIONS

Q’)/ eg‘py/» <
2>

W(xp)= [

x=yl2lpx+y/2)

e PROPERTIES:
= W(x,p) is real

= Use it to compute inner products as:

1
[ dx ap W,(x,0) Wy (3, p) = —— TH(p, p,)
20>

= Integral along lines give all marginal distributions:

ax+ bp=c

[ ax ap W (x, p) = Probabilin(aX + bP = )

MASTER EQUATION CAN BE REWRITTEN FOR THE WIGNER FUNCTION: IT HAS THE
FORM OF A FOKER-PLANCK EQUATION

W={HB W} +yd (pW W DTy W+ [ W




@) DECOHERENCE IN QUANTUM BROWNIAN MOTION

HOW DOES THE WIGNER FUNCTION OF A QUANTUM STATE LOOK LIKE?:
SUPERPOSITION OF TWO GAUSSIAN STATES

\pDz&tan ce L
>

v Wavelength A, = Z/

OSCILLATIONS IN WIGNER
FUNCTION: THE SIGNAL OF
QUANTUM INTERFERENCE. HOW
DOES DECOHERENCE AFFECTS THIS
STATE?




@) DECOHERENCE IN QUANTUM BROWNIAN MOTION

MASTER EQUATION CAN BE REWRITTEN FOR THE WIGNER FUNCTION: IT HAS THE
FORM OF A FOKER-PLANCK EQUATION

W={B WY +yd (pW W DT W+ [ W

i

I}
i

\> rstan ce /L

=
Havelerzozr/z A ==

W={H I} +DF W +>
W, = A)cos(£ p)= A(2) = exp(-T")

‘41\ !

t
|

L

osc

2
- Dk,

2 2
P=DL >, D=2myk, D, hy =3\2m kT [ DECOHERENCE RATE:

MUCH LARGER THAN
RELAXATION RATE

ST =y(L1h,,) =10" 7, ==1gr, T'= 300K, L =1cm




@) POINTER STATES, DECOHERENCE TIMESCALE

EVOLUTION OF WIGNER FUNCTION

NOTICE: NOT ALL STATES ARE AFFECTED BY THE
ENVIRONMENT IN THE SAME WAY (SOME
SUPERPOSITIONS LAST LONGER THAN OTHERS)




@) POINTER STATES, DECOHERENCE TIMESCALE

NOT ALL STATES ARE AFFECTED BY DECOHERENCE IN THE SAME WAY

QUESTION: WHAT ARE THE STATES WHICH ARE MOST ROBUST UNDER
DECOHERENCE?

POINTER STATES: STATES WHICH ARE MINIMALLY AFFECTED BY THE INTERACTION
WITH THE ENVIRONMENT

AN OPERATIONAL DEFINITION OF POINTER STATES:

“PREDICTABILITY SIEVE”
W) W) . e
Initial state of the system (pure) State of system at time t (mixed)

Suw (D) = =Tr(p(DIn(p(D)),  &(1) = Tr(p*(1))

Measure degradation of system’s state with entropy (von Neuman) or purity decay




@) POINTER STATES, DECOHERENCE TIMESCALE

Sy (D) = =Tr(p(DIn(p(0)), &0 =Tr(p*®)

These quantities depend on time AND on the initial state

PREDICTABILITY SIEVE: FIND THE INITIAL STATES SUCH THAT THESE QUANTITIES
ARE MINIMIZED (FOR A DYNAMICAL RANGE OF TIMES)

PREDICTABILITY SIEVE IN A PHYSICALLY INTERESTING CASE?
ANALIZE QUANTUM BROWNIAN MOTION

USE MASTER EQUATION TO ESTIMATE PURITY DECAY OR ENTROPY GROWTH

p=- i[HR + géw%wxz,p]— iv(O[x.{p.o}]- DO[x[x.p]]- f@O[x[pr.0]]

£ =21r{pp) = 21 -2DTr{[x] )+ 2Tr([ ] .0




@) POINTER STATES, DECOHERENCE TIMESCALE

A SIMPLE SOLUTION FROM THE PREDICTABILITY SIEVE CRITERION

»
Q
©
<
wn
[
)
D
)
e
-
=]
[
o)
e
o)
£

‘»
®
[72]
[
)
D
)
c
K]
.m
o n o) - E =
v @) ® -
Vo
N—
(

Minimize over initial state: Pointer states for QBM are minimally uncertainty coherent states!
W.Zurek, J.P.P & S. Habib, PRL 70, 1187 (1993)




@) POINTER STATES, DECOHERENCE TIMESCALE

WARNING: DIFFERENT POINTER STATES IN DIFFERENT REGIMES!

1) Dynamical regime (QBM): Pointer basis results from interplay between system
and environment

2) “Slow system” regime: (Quantum Measurement): System’s evolution is negligible,
Pointer basis is determined by the interaction Hamiltonian (position in QBM)

1.0
0.01 Squeezing

3) “Slow environment” regime: The evolution of the environment is very “slow” (adiabatic
environment): Pointer states are eigenstates of the Hamiltonian of the system! The
environment only “learns” about properties of system which are non-vanishing when
averaged in time. J.P. Paz & W.Zurek, PRL 82, 5181 (1999)

TAILOR MADE POINTER STATES? Environmental engeneering...
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PLAN

Lecture 1: Decoherence and the quantum origin of the classical
world. Evolution of quantum open systems. Quantum Brownian
motion as a paradigm. Master equation.

Lecture 2: General results on Dynamics and Thermodynamics of

linear quantum open systems. Emergence of the laws of
thermodynamics. E.A. MARTINEZ & J.P.P. arXiv:12074256

Lecture 3: Decoherence in Quantum Brownian Motion.
Decoherence timescales. Pointer states. Decoherence and
disentanglement. Different dynamical phases for the behavior of
quantum correlations in quantum open systemes.

Lecture 4: Decoherence in quantum information processing. How
to fight against decoherence? How to characterize decoherence?
Quantum process tomography (QPT).

Lecture 5: New methods for Quantum Process Tomography.
“Selective and efficient QPT”. Theory and experimental
implementation with single photons.



ENTANGLEMENT IS A RESOURCE

WHY DON’T WE HAVE QUANTUM

TECHNOLOGIES (ENTANGLEMENT
BASED) AROUND US?

DUE TO DECOHERENCE
(induces disentanglement, quantum-classical transition)

HOW DOES ENTANGLEMENT BEHAVE
IN A QUANTUM OPEN SYSTEM?

DOES IT DISSAPEAR? CAN IT PERSIST
FOR LONG TIMES?...




“Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?
A. Einstein, B. Podolsky, N. Rosen.
Physical Review 47, 1935, 777-780.

‘ Entangled states of two particles (two modes) \

—  —

F=7—7:P =P + P,

(1) 3) W), =7 =% P = Py)

Lp(?,ﬁ) — 8(7 — 70)5(15 — 150)

These are non-physical (idealized) states
A set of physical (yet entangled) states: Two mode squeezed states.

a, = x,;, + iplz; |II’>12 = exp(r(al+a2+ — alaz))|0>12

2 2

m<2Ox_ Sp
= + = 2
op_ m<20x exp(27)

A Op ¢ > Entangled Gaussian states
< >

Measure of entanglement

Sp Sx E=2r

Entanglement can be transfered to spins by
v local operations and then it can be used...

¥4



A SIMPLE MODEL WITH NON-TRIVAL PHASES
Two oscillators & a common reservoir. Long time
evolution of entanglement.

System System i System ‘
€ I D) I I
% . g; .D
Environment Environment Environment
PRL 100, 220401 (2008) PHYSICAL REVIEW LETTERS & TUNE 2008

Dynamics of the Entanglement between Two Oscillators in the Same Environment

Juan Pablo Paz and Aungusto J. Roncaglia

Departamento de Frsica, FCEYN, UBA, Fabelldn I, Cludad Universitaria, 1428 Fusnos Afres, Argenting
(Received 19 November 2007; published 2 June 2008)

A PROPOSED ION TRAP EXPERIMENT

PHYSICAL REVIEW A 81, 022306 (2010)

Observing different phases for the dynamics of entanglement in an ion trap

Cecilia Cormick and Juan Pablo Paz
Departamento de Fisica, FOEWN, UBA, & [FIBA CONICEL Ciudad Untversttaria Pabelldn I, 1428 Buernos Atres, Argeniing
{Received 24 August 2009; published 9 February 2010)



‘ THE MODEL: \

System
s} 9

Environment

” THE ENTANGLEMENT MEASURE \

SIMPLICITY: GAUSSIAN INITIAL STATES (GOOD ENTANGLEMENT MEASURE)

Vij(t) = %<{ri’rj}> ~ <’"i><”j>§ o= (xpplaxzapz)

Entanglement measure: Logarithmic Negativity

E, = maX{O,— 1n(2vmin )}

v .= lowest symplectic eigenvalue

m

Vi of partially transposed Vij




T o ‘ THE SOLUTION \

Symmetric coupling

Resonant oscillators

Environment

Resonant oscillators

ALMOST IDENTICAL TO THE USUAL “QUANTUM BROWNIAN MOTION” MODEL
NTEGRATING OUT (TRACING OUT) THE ENVIRONMENT WE OBTAIN AN EXACT MASTER EQUATION

p=—ilHp,p| —iy({t)|[xy {p+. p} — D)2+, 24, pl] = f(O)]24, [P+, pl]

f f f f

Renormalized Damping term Normal diffusion Anomalous diffusion
Hamiltonian

)\’2
Ohmic environment | J(@) =, - Sw-w,)=2my %H(A ~w); y(t)=y (t>> A7)
n n T=O

n

high T * Asymptotic regime: A%p, = (p?), A%z, = (2?)

2
D — 2myT D — myQ+ 2my (ZIOg% —1)

T
29T, A+Q D D
— _ lo . f 2 A
! 19 gA—Q Apy =[50 QAzy = o f%—ylog—
2m4y  m T -0

oy

Y




‘ REMEMBER: A PROPERTY OF THE SOLUTION \

CONSIDER THE ASYMPTOTIC STATE FOR QUANTUM BROWNIAN MOTION

p=—ilHp,p| —iy(t) x4, {p+, p}] = D(O)]2y, [24, pl] = O]z, [P+, o]

EXACT MASTER EQUATION B.L.
D g Hu, J.P. Paz and Y. Zhang, Phys.
20 o Rev. D42, 3243 (1992)
2m’y m

ASYMPTOTIC STATE IS

l l SQUEEZED!!

QUANTUM WEIRDNESS??
FOLLOWS FROM MASTER EQUATION... COEFFICIENT f IS THE ONE TO BLAME!

ASYMPTOTIC STATE VIOLATES
EQUIPARTITION!




COMPUTING ENTANGLEMENT FOR LONG TIMES

¢ |n the asymptotic regime:

Ap, = 2 QA$+\/ = —i

v 2m?y  m
A

{zt,p+}) =0

The equilibrium state is
squeezed due to f (low

temperature regime)

THEN THE ASYMPTOTIC FORM OF THE COVARIANCE MATRIX IS

/\ - - -

p+/\

Free oscillator of O 0
mass m and 0 0
frequency _ V= ‘
0 0 |[Ap, O
0 0 | 0 A%,

Correlations between the
oscillators are zero in the
asymptotic regime

Equilibrium moments

\/ of T oscillator



‘ ENTANGLEMENT IN THE ASYMPTOTIC STATE \

EVALUATE ANALYTICALLY THE LOGARITHMIC NEGATIVITY FOR THE (21, 22) OSCILLATORS

En(t) — max{0, Exr + AENG(t)}
G(t) is a function with period 7/Q_ in {—1,1}

~ 1
Meanvalue: | Fnr = max{r, remit} — 5 In(4Az Ap dx_dp_)

Amplitude of oscillations: AFExN = min{r, et}
~ 1 or . .
ro= |= ln(mQ_(S—)\ —— Squeezing of the = _ oscillator
p_
Where: < | A
rerit = |= In(mQ_ ‘r‘”)‘ —> Squeezing of equilibrium for the
S Apy oscillator X

~

E, — (Maximal Sqeezing) - (Entr opy )

AE, — (Minimal Sqeezing)

WE CONCLUDE THAT THERE ARE THREE QUALITATIVELY DIFFERENT ASYMPTOTIC BEHAVIORS!




e Ry

t;' THREE DYNAMICAL PHASES FOR ENTANGLEMENT

Phase diagram (complete description of the asymptotic behavior) :

Analytical expressions can be obtained for the asymptotic values of the coefficients

of the master equation for an ohmic environment. We can use them to construct a
phase diagram

Irl

510 15 20 25 30

* Accurately describe all numerically simulations !



THREE DYNAMICAL PHASES FOR ENTANGLEMENT

o Interestlnq points in the phase diagram :

Scrit rCI’it r2

Irl

0.35

Irl

T, issuchthat Ax|

T=

Ty 2me

1, issuchthat , — 10g[m(277190)

Y3

/

\ )
7 = log Ap(T - O)

7127/

/

T A1 — y2 /27

2 arccos(y/<2)

)

1
S IO

1—4y? /7

A1 — y2 /23

arccos(y /<2)

+ illog(/\)
T $2 <2




(&

t% THREE DYNAMICAL PHASES FOR ENTANGLEMENT

— (Maximal Sqeezing) - ( Entropy)

E,
0.8 AE, — (Minimal Sqeezing

o

P 0.35 0 05 1 15
Irl Irl

r1 Scrit rCI’it

NSD Island: Non Markovian, non perturbative

Entanglement in the NSD Island COMES FROM the squeezing of
the equilibrium state! (from the environment)

* SDR region (also non-Markovian) decreases width for ohmic environment as %

* SD region: entanglement dies because entropy is too large.

NSD “continent”. entanglement persists because it is in a protected state.




HOW TO OBSERVE THESE PHASES?

PHYSICAL REVIEW A 81, 022306 (2010)

Observing different phases for the dynamics of entanglement in an ion trap

Cecilia Cormick and Juan Pablo Paz
Departamento de Fisica, FOEWN, UBA, & [FIBA CONICEL Ciudad Untversttaria Pabelldn 1, 1428 Buenos Atres, Aroeniinag
{Received 24 August 2009; published 9 February 2010)
System

System
Wis} T9
System System o Py
Wis} xT9
o ® "~ e @
Mg 'Be 24 Mg
0 =1680w, =r,=~075 S, ~032 _
Environment
0, =220, =r,~047, S ~040

A ROUGH GUIDE THROUGH THE EXPERIMENT

* Three ions are cooled, y-potential is tight. Radial (x)
modes are used for the simulation.

kT

» Then central ion is cooled continuously. This cools two
normal modes. “Temperature”: free parameter

» Squeezing of radial mode is created by varying x-trap
frequency. Initial squeezing is free parameter.

* Final state dispersions are measured




SUMMARY

TIMESCALES FOR DECOHERENCE: SHORTEST IN THE
MACROSCOPIC DOMAIN

PREFERRED STATES: PREDICTABILITY SIEVE

DECAY OF ENTANGLEMENT: NONTRIVIAL DYNAMICAL
PHASES (EXPERIMENTALLY OBSERVABLE IN ION
TRAPS?)

DECAY OF OTHER QUANTUM CORRELATIONS (DISCORD):
N. FREITAS AND J.P.P., |Dynamics of Quantum Discord of Two
Oscillators Coupled With the Same Environment”, Phys. Rev. A8S,
032118 (2012)



ANOTHER LOOK AT THE EVOLUTION OF
QUANTUM OPEN SYSTEMS: INPUT-OUTPUT

MOST GENERAL EVOLUTION OF TWO INTERACTING SUBSYSTEMS

Pa

Px

REDUCED DENSITY
MATRIX OF SUB-
SYSTEM

Pas(T)

A1) =Tr{U 10, 0) ® p, (O ;") *

05(0) =%, (0))(¥, (0)
A, =(9,[UL|W,©0), Y AA =1

p.(T)=D A, p,0) A

, _




ANOTHER LOOK AT THE EVOLUTION OF
QUANTUM OPEN SYSTEMS: INPUT-OUTPUT

HOW GENERAL IS THIS RESULT?

Pa
Pas(T)
Ps
VALID IF INITIAL *
STATE OF THE A1) =Tr{U 10, (0) ® p, (OU,,")

ENVIRONMENT IS

VIXED (0BVIOUS) |P4(D) = DA, p,O A", Y ASA, =1
b b

P, (0) = 2 PP, (0)® py (0)

Tr(pB,k(O)pB,k' (O)) =0 i k=k




QUANTUM EVOLUTION AS A LINEAR MAP

T

»

pin = pout = A(lom)

p out

.

A QUANTUM PROCESS IS A LINEAR MAP (PRESERVING HERMITICITY,
TRACE AND POSITIVITY)

pout =

Pm E X By P E

P=I, P=X,PB=l, P=1
Ea=Pml®Pm2® """" ®Pmn
E,=10L®...0I

Tr(E,E,) = DS,




pin

e

»

pout = A(pm)

.

IO out

p out

A(pin) = EXabEb P E.
ab

e MAP IS HERMITIAN

« MAP PRESERVES TRACE Y x,..E,.'E, =1

ANY LINEAR HERMITIAN MAP
IS THE DIFFERENCE OF TWO
CP MAPS

MAP A(p) IS COMPLETELY POSITIVE (CP)

Kb =

u,D.U,,

1

A(p) = D D.A.pA;

A, = zchEb
b

MATRIX Xa» 1S POSITIVE

KRAUS FORM OF THE MAP




THE NEED FOR QUANTUM PROCESS TOMOGRAPHY

IF YOU KNOW THE KRAUSS REPRESENTATION THEN YOU CAN
DEVISE GOOD ERROR CORRECTION STRATEGIES

pout =(1_p) pin +prmZ
B
o|0) + /3’1>—@U@— 5
Prob(l)=1-p
‘O>_ @_ Prob(Z)=p |
|| ‘_
pout ) pin + O(pz)’ F £ Tr(pinpin) =1_ 0(p2)

FIDELITY GOES FROM LINEAR TO QUADRATIC IN p!

Pous

it

BUT WHAT IF YOU DO NOT KNOW THE KRAUSS OPERATORS?

NEED TO KNOW YOUR ENEMY TO BE ABLE TO DEFEAT HIM
QUANTUM PROCESS TOMOGRAPHY




WHY IS QUANTUM PROCESS TOMOGRAPHY HARD?

pout > pm

EXabE P, £ EXabEa+Eb = &
ab

1) THERE ARE EXPONENTIALLY MANY COEFFICIENTS Xomn
(.e. Thereare D* x D* of them where D =2")
 2) TO FIND OUT ANY ONE OF THEM WE NEED EXPONENTIAL RESOURCES

STANDARD QUANTUM PROCESS TOMOGRAPHY (SQPT)
Chapter 10, Nielsen & Chuang’s book

‘Pl.k = Tr( p,A( pi))‘ » EXPERIMENTALLY DETERMINE “TRANSITION PROBABILITIES”

g, = EanTr(pkEn P;

e FIND X,n INVERTING (HUGE) LINEAR SYSTEM.

“STANDARD QUANTUM PROCESS TOMOGRAPHY”
(NIELSEN & CHUANG, CHAPTER 10)




QUANTUM PROCESS TOMOGRAPHY IS HARD

LECTURE 5

ARE THERE GOOD (EFFICIENT) METHODS FOR
QUANTUM PROCESS TOMOGRAPHY?

YES (FOR PARTIAL QPT, EFFICIENT METHODS TO
EXTRACT USEFUL INFORMATION)
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world. Evolution of quantum open systems. Quantum Brownian
motion as a paradigm. Master equation.

Lecture 2: General results on Dynamics and Thermodynamics of

linear quantum open systems. Emergence of the laws of
thermodynamics. E.A. MARTINEZ & J.P.P. arXiv:12074256

Lecture 3: Decoherence in Quantum Brownian Motion.
Decoherence timescales. Pointer states. Decoherence and
disentanglement. Different dynamical phases for the behavior of
quantum correlations in quantum open systemes.

Lecture 4: Decoherence in quantum information processing. How
to fight against decoherence? How to characterize decoherence?
Quantum process tomography (QPT).

Lecture 5: New methods for Quantum Process Tomography.
“Selective and efficient QPT”. Theory and experimental
implementation with single photons.



PHYSICAL This talk

REVIEW." ) PROCESS TOMOGRAPHY =0 e oL
LETTERS PSRRI\ . =8

Lo o e it Pt s 3018 Anticles published week ending 2 SEPTEMBER 2011

;essary? Why is it hard? Standarc
3 éy 1d Efficient Quantum Process To

1S Aires

HYSICAL REVIEW LETTERS gsgﬁ%éﬁgmu

Americun Physial Sociey.  ES,  Volume 107, Number 10

physic

Selective and Efficient Quantum Process Tomography without Ancilla

Christian Tomds Sehmjege]ew,1 Ariel Bendereky,l Miguel Antonio Larotonda,” and Juan Pablo Paz’

IDeparmmenm de Fisica & IFIBA, FCEyN, UBA, Pabellon I, Ciudad Universitaria, 1428 Buenos Aires, Argenting

CEHAP, CITEDEF, JB. de La Salle 4397, 1603 Villa Martelli, Buenos Aires, Argenting
(Reeewed 10 Februery 2011, pubhshed 1 September 201 1)

= cws s —ua ESNES ]

An improved quantum algorithm for process tomography AND its
experimental implementation on a 2-qubit system (2 qubits in 1
photon)




f WHAT IS QUANTUM PROCESS TOMOGRAPHY?

A QUANTUM PROCESS IS A LINEAR MAP
s (PRESERVING HERMITICITY, TRACE AND
0. —p, = A( Pm) Wy, POSITIVITY)
ANY LINEAR MAP IS DEFINED BY ITS
. ‘CHI-MATRIX
m=] P=X. PEY P=7
100ut - pm EanE lOm v 1 , ; -
Em=Pm1®Pm2® """" ®Pmn
« MAP IS HERMITIAN o = £y =1 OH 0 B,

« MAP PRESERVES TRACE Y x,..E,.'E, =1

MAP A(p) IS COMPLETELY POSITIVE (CP) “ MATRIX X, IS POSITIVE



IMPORTANCE OF QUANTUM PROCESS TOMOGRAPHY

a) FUNDAMENTAL
b) NECESSARY TO AVOID DECOHERENCE

pout =(1_p) pin +prmZ

R

WA OTTO o [FOTT
rob(l)=1-p

‘0>_ @_ Prob(Z)=p _@ !

pout 5 pin + O(pz)’ F £ Tr(pinpin) =1_0(p2)

Pous

ERRORS MAY BE CORRECTED (fidelity goes from linear to quadratic in p)

BUT TO DO THAT IT IS NECESSARY TO CHARACTERIZE THE
TYPICAL ERRORS AND FOR THIS WE NEED QUANTUM PROCESS
TOMOGRAPHY (QPT)




f WHY IS QUANTUM PROCESS TOMOGRAPHY HARD?

pout = A pm

EX,ME 0w Ents D, XmEn'E, =1

1) THERE ARE EXPONENTIALLY MANY COEFFICIENTS Xomn
(.e. Thereare D* x D* of them where D =2")
 2) TO FIND OUT ANY ONE OF THEM WE NEED EXPONENTIAL RESOURCES

STANDARD QUANTUM PROCESS TOMOGRAPHY (SQPT)
Chapter 10, Nielsen & Chuang’s book

‘Pl.k = Tr( p,A( pi))‘ » EXPERIMENTALLY DETERMINE “TRANSITION PROBABILITIES”

g, = EanTr(pkEn P;

e FIND X,n INVERTING (HUGE) LINEAR SYSTEM.

“STANDARD QUANTUM PROCESS TOMOGRAPHY”
(NIELSEN & CHUANG, CHAPTER 10)




QUANTUM PROCESS TOMOGRAPHY IS HARD!

QUANTUM RESOURCES (qgbits, operations, state preparations, measurements, etc):

* prepare D? initial states and detect D2 final states

* repeat experiments (exponentially) many times to geta fixed precision in K mn

CLASSICAL RESOURCES (data processing in classical computers): ‘

e invert an exponentially large (linear) system

et THIS IS Abs(wéxCNOT)

Average fidelity: 0.7 |




Realization of the quantum Tofoli gate with
trapped ions” T Monz, K. Kim, W. Hansel, M.

Riebe, A. S. Villar, P. Schindler, M. Chwalla,
M. Hennrich, and R. Blatt, Physical Review
Letters 102, 040501 (2009)

64x64 matrix. Obtained after inverting a
4096x4096 linear system formed with all the
probabilities measured after perfirnubg 4096
experiments (prepare each of 64 independent
states and measure each of 64 independent
transition probabilities.

\\\\ 1\\\\
111\\\\**%\\“&311\%1\% e

nontt
TR W

W
W 1_111\\\ \\\1
\\\\Wx\\\“

Average fidelity: 0.67
Measured Chi-matrix shows the same
“fingerprint” of the ideal one (Tofoli)




f THIS TALK: AN ALTERNATIVE APPROACH FOR QPT

* 1) SELECT A COEFFICIENT X.» (OR A SET OF THEM)

e 2) DIRECTLY MEASURE THEM WITHOUT DOING FULL QUANTUM PROCESS
TOMOGRAPHY

QUANTUM AND CLASSICAL RESOURCES Poly(Log(D))

METHOD BASED ON A PROPERTY OF THE CHI-MATRIX
MATRIX ELEMENTS ARE AVERAGED SURVIVAL PROBABILITIES OF A CHANNEL

F,, (A) = [ dw) (W[ A(E, | W)(W[E, ) W)
Fo(A) = —

D 0
(D 2 1) ( an + mn)
Estimate F,, (A) - Estimate -

* A simple consequence f d‘\m <‘P‘ A ‘q;> <q;‘ B\‘I’> T

of the following identity (TF(AB) 4 Tr(A)Tr (B ))

|
D(D+1)




i QPT IS HARD... (continuation)

o STANDARD QUANTUM PROCESS (NIELSEN & CHUANG) IS
EXPONENTIALLY HARD EVEN TO ACHIEVE PARTIAL CHARACTERIZATION!

ARE THERE OTHER METHODS? DCQP (‘DIRECT CARACTERIZATION OF A
QUANTUM PROCESS). D. Lidar and M. Mohseni, Phys. Rev. A 77, 032322 (2008)

« DIAGONAL MATRIX ELEMENTS  X..» ARE SURVIVAL PROBABILITIES OF SYSTEM
PLUS ANCILLA (A VERY EXPENSIVE RESOURCE!)

X

A

vt

‘I’>Bd{

y

} %) e

W), = 75 21) 1)

Xoo =Bell <lIJ|A ®1 ('IP> Bell <\If| Bell )‘IIJ> Bell

e BUT OFF DIAGONAL ELEMENTS ARE STILL EXPONENTIALLY HARD TO CALCULATE

« NEED AN EXPENSIVE RESOURCE: CLEAN ANCILLA THAT INTERACTS WITH OUR

SYSTEM




i THE IMPORTANCE OF BEING SELECTIVE...

QUESTION: How close are we approaching a “target” operation?

U;pU, EX,SZZE pE,"

Example: C-NOT (chi-matrix has only 16 non-vanishing elements)

=|0)0|® 1 +[1){1|® X —%(1+Z)®I+%(I—Z)®X

AVERAGE FIDELITY PROVIDES A GOOD WAY TO QUANTIFY THIS
r

MORAL DON'T NEED THE FULL MATRIX TO COMPUTE F (ONLY 16 ELEMENTS'
INDEPENDENT OF D!!)




! TWO PROBLEMS MAKE NEW METHOD LOOK IMPOSSIBLE!
F,,(A)= [ d[¥) (¥ A(E,|WXYPIE,) W)
1

F _(A)= D S
PERFORMING | d¥) IMPLEMENTING E, [WYWIE,
IN THE LABORATORY??? IN THE LABORATORY???

THIS TALK: TWO SOLUTIONS!

1) How to perform the integral over the
entire Hilbert space?

2) How to apply a non physical (non CP)
map?




i HOW TO INTEGRATE IN HILBERT SPACE?

e USE 2-DESIGNS!
e ASET OF STATES (S) IS A 2-DESIGN IF AND ONLY IF

1

[dw)(®|A|®)(P|BW)=—— ) (D,|AD ) (D, |BD,)

#(S)\cl>]>es

» 2-designs are powerful tools!! USEFUL RESULTS

)

a) 2-DESIGNS EXIST!
b) THEY HAVE AT LEAST D* STATES

STATES OF (D+1) MUTUALLY UNBIASED BASIS FORM A 2-DESIGN

d)

EFFICIENT ALGORITHMS TO GENERATE 2-DESIGNS EXIST




i INTERLUDE ON 2-DESIGNS
« IS THE EXISTENCE OF 2-DESIGN A SURPRISE?

fdxf fdx(a+bx+cx) ;(f(x1)+f(x2))

1 1
X, =—x.—=8=1x,,x,r =2 -design
12 7 12 {1 2} 8

 2-DESIGNS FOR SPIN 1/2: ENABLE TO COMPUTE AVERAGES OF
PRODUCTS OF TWO EXPECTATION VALUES (integrals of functions that depend
upon TWO bras and TWO kets)

S AR B+ < b A0, Y 1)
B _</|\y ‘AM\Y ><1\y ‘B‘Ty> R %<‘|’y ‘A“l’y><‘|’y ‘B“I’y>

TR, (b Bl )

A B A B

[ alw) (] w) (] Blw) -

1

A B1‘Z>+6<J,Z A

B

+ —<’|‘Z




i HOW TO APPLY A NON CP MAP?

TRANSFORM IT INTO THE DIFFERENCE BETWEEN CP MAPS...

F,.(A) - D(DIH) (e, AE, |0 Yo |E, o)

] 1
P D(D+1) 2<‘DJ ‘ A((E ®,[(£, = E)) 2))
J
CAN WE PREPARE
Re(F,,(A)) = %(Fm (A)+F~un(A)) THOSE STATES?

OPERATORBASI E, <Gmumm=p> | ;DESIGN [P )

SPLIT THE OPERATOR BASE INTO (D+1) COMMUTING SUBSETS
(each set contains the identity and D-1 commuting operators)
EACH COMMUTING SET OF E,, OPERATORS DEFINES A BASIS
ALL SUCH (D+1) BASES ARE MUTUALLY UNBIASEDTs)




i HOW TO APPLY A NON CP MAP?

USE 2-DESIGN DEFINED BY THE (D+1) MUBs ASSOCIATED WITH THE SPLIT
OF THE OPERATORBASIS E

‘(I)J'> %‘(D(b)k%b =L...D+1; k=1,.,D Em\q)(b)k> z‘q)(b)k'>
)]0 )

(Em + En)

| |

EFFICIENT PROCCEDURE FOR PREPARING SUCH STATES EXIST!




I NEW METHOD: SELECTIVE AND EFFICIENT Q.P.T.

FIRST EFFICIENT METHOD TO DETERMINE ANY ELEMENT OF CHI MATRIX
OF A QUANTUM PROCESS

Poly(Log(D)) QUANTUM GATES REQUIRED
Poly(Log(D)) CLASSICAL POST-PROCESSING REQUIRED
NO ANCILLARY RESOURCES (CLEAN QUBITS) ARE REQUIRED




i PHOTONIC IMPLEMENTATION: (EXPERIMENT IN OUR
LAB IN BUENOS AIRES)

FULLY CHARACTERIZING A QUANTUM CHANNEL AFFECTING TWO QUBITS
ENCODED IN A SINGLE (HERALDED) PHOTON

"y

STATE b) Avbitrary gate for state
PREPARATION preparation and readout,
Fath
®0 |- 20
Fol arization
‘ b > { Herald qubit U, U
J
£ =tate
Hate : g Measurement
( o )(I) > Preparation
m = n J

-

Folarizing Half! Quarter
L& Wawve Flate

D Phnse Nan—Paiariziﬁg "I\«,

Plate qf,
B single Mode
Deteamr Hiber

W 0w WEL O v
Twmoe IT BEO

STATE
DETECTION “D j>



PHOTONIC IMPLEMENTATION (EXPERIMENT IN OUR
LAB IN BUENOS AIRES)




FULL QUANTUM PROCESS TOMOGRAPHY

OUR METHOD GIVES PERFECT AGREEMENT WITH STANDARD QPT (alla
NIELSEN AND CHUANG)




f

FULL QUANTUM PROCESS TOMOGRAPHY

IMPORTANT: EACH MATRIX ELEMENT IS ESTIMATED BY SAMPLING OVER THE 2-
DESIGN. PRECISION INCREASES WITH SAMPLE SIZE




FULL QUANTUM PROCESS TOMOGRAPHY

IMPORTANT: EACH MATRIX ELEMENT IS ESTIMATED BY SAMPLING OVER THE 2-
DESIGN. PRECISION INCREASES WITH SAMPLE SIZE




i

POWER OF THE METHOD: SAMPLING & PARTIAL QPT

COMPUTE FIDELITY OF A QUANTUM GATE WITHOUT DOING FULL QUANTUM
PROCESS TOMOGRAPHY!

Uy pUy; = D o0o2E, p E,*

F = [ d) (W A(U; %N, ) %) = Y X F,,

= 0.4 F

nm

1 1
U, =|0)0|®Z +|1)(1|® X —5(I+Z)®Z+5(I—Z)®X

"‘--utq-_
-
e

# of pr.clb E.b:i.l..i.tiaa

0 12
measured
[[] Controlled I, gate

14 20

[:] Controlled 7 gate with dephasing on one gubat




i THE IMPORTANCE OF BEING SELECTIVE...

QUESTION: How close are we approaching a “target” operation?

U;pU, EX,SZZE pE,"

Example: C-NOT (chi-matrix has only 16 non-vanishing elements)

=|0)0|® 1 +[1){1|® X —%(1+Z)®I+%(I—Z)®X

AVERAGE FIDELITY PROVIDES A GOOD WAY TO QUANTIFY THIS
r

MORAL DON'T NEED THE FULL MATRIX TO COMPUTE F (ONLY 16 ELEMENTS'
INDEPENDENT OF D!!)




4 SUMMARY

FULL QPT IS ALWAYS HARD. STANDARD METHODS FOR PARTIAL QPT ARE
ALSO EXPONENTIALLY HARD

e THERE IS AN ALTERNATIVE METHOD FOR EFFICIENT AND SELECTIVE PARTIAL
QUANTUM PROCESS TOMOGRAPHY

o IT INVOLVES ESTIMATION OF ‘SURVIVAL PROBABILITIES’ OF A SET OF STATES
FORMING A 2-DESIGN (VERY USEFUL RESOURCE!)

A
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