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PLAN

Lecture 1: Decoherence and the quantum origin of the classical
world. Evolution of quantum open systems. Quantum Brownian
motion as a paradigm. Master equation.

Lecture 2: General results on Dynamics and Thermodynamics of
linear quantum open systems. Emergence of the laws of
thermodynamics. Decoherence in Quantum Brownian Motion.

Lecture 3: Decoherence timescales. Pointer states. Decoherence and
disentanglement. Different dynamical phases for the behavior of
quantum correlations in quantum open systems.

Lecture 4: Decoherence in quantum information processing. How
to fight against decoherence? How to characterize decoherence?
Quantum process tomography (QPT).

Lecture 5: New methods for Quantum Process Tomography.
“Selective and efficient QPT”. Theory and experimental
implementation with single photons.



Lecture 1: The Good Side of Decoherence

Colaborations with:  W. Zurek (LANL), M. Saraceno (CNEA), D. Mazzitelli
(UBA), D. Dalvit (LANL), J. Anglin (MIT), R. Laflamme (IQC),  D. Cory (MIT),

G. Morigi (UAB), S. Fernandez-Vidal (UAB), F. Cucchietti (LANL),

Current/former students: D. Monteoliva, C. Miquel (UBA), P. Bianucci (UBA, UT), L. Davila (UEA, UK),
C. Lopez (UBA, MIT), A. Roncaglia (UBA), C. Cormick (UBA), A. Bendersky (UBA), F. Pastawski
(UNC), C. Schmiegelow (UNLP, UBA), N. Freitas (UBA), G. Petrungaro (UBA), E. Martinez (UBA)

Review: J.P.Paz and W. Zurek quant-ph/0010011.

Helps us to
understand the origin
of classical world

Enemy for
quantum
information
processing



         DECOHERENCE: AN OVERVIEW

• DECOHERENCE AND THE QUANTUM-CLASSICAL TRANSITION: THE PROBLEM
HILBERT SPACE IS HUGE!!:
ALL STATES ARE ALLOWED

CLASSICAL STATES: A
(VERY!) SMALL SUBSET

Albert Einstein (1954) in a letter to Max Born:

“Let         and         be two solutions of the same
Scrodinger equation. When the system is a macro -
system and when          and        are “narrow” with
respect to the macro coordinates then in by far the
largest number of cases this is no longer true for

         . Narrowness with respect to macro -
coordinates is not only independent of the

principles of quantum mechanics but, moreover, it
is incompatible with them.”
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         DECOHERENCE: AN OVERVIEW

• HOW TO EXPLAIN THE ORIGIN OF A CLASSICAL WORLD FROM A QUANTUM 
SUBSTRATE?: WHY IS IT THAT SOME SYSTEMS ARE ALWAYS FOUND IN

“CLASSICAL STATES”? (“NARROW” WITH RESPECTO TO MACRO-COORDINATES)

• DECOHERENCE PARADIGM: CLASSICALITY IS AN EMERGENT PROPERTY

• DECOHERENCE: DYNAMICAL SUPRESSION OF QUANTUM SUPERPOSITIONS.
MOST STATES ARE HIGHLY UNSTABLE. A PREFERRED SET OF STABE STATES

EMERGES (IT IS DINAMICALLY SELECTED BY THE ENVIRONMENT).

• CLASSICALITY IS INDUCED ON SUBSYSTEMS BY THE  ENVIRONMENT

• BASIC PHYICAL IDEA BEHIND  DECOHERENCE IS VERY SIMPLE: SYSTEM-
ENVIRONMENT INTERACTION CREATES CORRELATIONS

• DECOHERENCE IS INDUCED BY THE CONTINUOUS MONITORING BY THE
ENVIRONMENT: A RECORD OF THE RELATIVE STATE OF THE SYSTEM IS

IMPRINTED IN THE ENVIRONMENT.

• ISN’T THIS TOO SIMPLE? (HOW MUCH CAN WE BUY WITH THIS SIMPLE IDEA?)

• ENOUGH TO UNDERSTAND THE ORIGIN OF CLASSICAL FROM QUANTUM



         DECOHERENCE: AN OVERVIEW

LAST DECADE: MANY  QUESTIONS ON DECOHERENCE WERE ADDRESSED AND
ANSWERED

• NATURE OF POINTER STATES: QUANTUM SUPERPOSITIONS DECAY INTO MIXTURES
WHEN QUANTUM INTERFERENCE IS SUPRESSED. WHAT ARE THE STATES SELECTED BY THE
INTERACTION? POINTER STATES: THE MOST STABLE STATES OF THE SYSTEM, DYNAMICALLY

SELECTED BY THE ENVIRONMENT: W.Zurek, S. Habib & J.P. Paz, PRL 70, 1187 (1993), J.P. Paz & W.
Zurek, PRL 82, 5181 (1999)

• TIMESCALES: HOW FAST DOES DECOHERENCE OCCURS? J.P. Paz, S. Habib & W. Zurek, PRD
47, 488 (1993), J. Anglin, J.P. Paz & W. Zurek, PRA 55, 4041 (1997)

• DECOHERENCE FOR CLASSICALLY CHAOTIC SYSTEMS: W. Zurek & J.P. Paz, PRL 72,
2508 (1994), D. Monteoliva & J.P. Paz, PRL 85, 3373 (2000).

• CONTROLLED DECOHERENCE EXPERIMENTS: S. Haroche et al (ENS) PRL 77, 4887
(1997), D. Wineland et al (NIST), Nature 403, 269 (2000), A. Zeillinger et al (Vienna) PRL 90 160401 (2003),

• ENVIRONMENT ENGENEERING: J.P. Paz, Nature 412, 869 (2001)

• ENTANGLEMENT DYNAMICS: J.P. Paz, PRL 100, 2200401 (2008)



         A MODEL: QUANTUM BROWNIAN MOTION

QUANTUM BROWNIAN MOTION (QBM): Paradigmatic model for a quantum open system

(realistic in many cases: Caldeira-Leggett, etc)

System: Particle (harmonic oscillator)

Environment: Collection of harmonic oscillators

Interaction: bilinear
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H = HS + HE + H in t, HS =
p2

2m
+ V0 (x), HE =
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n
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n
∑ ,

PROBLEM IS EXACTLY SOLVABLE!. USEFUL TOOL:
EXACT MASTER EQUATION (EVOLUTION EQUATION
FOR THE REDUCED DENSITY MATRIX); B.L. Hu, J.P.

Paz and Y. Zhang, Phys. Rev. D42, 3243 (1992)

€ 

J ω( )=
λn

2

2mnωn

δ ω −ω n( )
n
∑

TWO “PARAMETERS”: 1) INITIAL STATE OF
ENVIRONMENT (TEMPERATURE T), 2)

SPECTRAL DENSITY OF ENVIRONMENT

Our aim: Study evolution of the state of the system

‘State of the system’: Reduced density matrix

€ 

ρS = TrE ρSE( )

€ 

t = 0 ρSE (0) = ρS (0) ⊗ ρE (0)Asumption (standard): Uncorrelated initial state



DERIVATION OF MASTER EQUATION FOR QBM (you should do this once in your lifetime!)

         A MODEL: QUANTUM BROWNIAN MOTION

GENERAL FORM OF THE MASTER EQUATION (VALID FOR ALL VALUES OF INITIAL
TEMPERATURE OF ENVIRONMENT AND FOR ALL SPECTRAL DENSITIES)

€ 

˙ ρ =− i HR ,ρ[ ]− iγ(t) x, p,ρ{ }[ ]− D(t) x, x,ρ[ ][ ]− f (t) x, p,ρ[ ][ ]

€ 

˙ ρ T =− i HT ,ρT[ ]
1) START FROM SCHROEDINGER EQUATION FOR THE SYSTEM+ENVIRONMENT

2) GO TO THE INTERACTION PICTURE

€ 

H 0 = HS + HE ; U0 = exp −iH 0t( ) ; ˜ ρ T =U 0
−1ρTU 0 ; ˜ H in t = U0

−1H in tU0

€ 

˜ ˙ ρ T =− i ˜ H in t, ˜ ρ T[ ]⇒ ˜ ρ T t( )= dt1... dtn
t 0

tn −1

∫
t0

t

∫
n= 0

∞

∑ 1
i n

˜ H in t t1( ),..., ˜ H in t t n( ), ˜ ρ T t 0( )[ ][ ]
3) USE SECOND ORDER PERTURBATION THEORY

€ 

˜ ρ T t( )= ˜ ρ T t0( )+
1
i

dt1 ˜ H in t t n( ), ˜ ρ T t 0( )[ ]
t0

t

∫ − dt1 dt2
t 0

t 2

∫
t 0

t

∫ ˜ H in t t1( ), ˜ H in t t 2( ), ˜ ρ T t0( )[ ][ ]



         A MODEL: QUANTUM BROWNIAN MOTION

4) TAKE TIME DERIVATIVE AND TRACE OVER THE ENVIRONMENT

€ 

˜ ρ T t( )= ˜ ρ T t0( )+
1
i

dt1 ˜ H in t t n( ), ˜ ρ T t 0( )[ ]
t0

t

∫ − dt1 dt2
t 0

t 2

∫
t 0

t

∫ ˜ H in t t1( ), ˜ H in t t 2( ), ˜ ρ T t0( )[ ][ ]

€ 

˜ ˙ ρ T t( )=
1
i

˜ H in t t( ), ˜ ρ T t0( )[ ]− dt1
t0

t

∫ ˜ H in t t( ), ˜ H in t t1( ), ˜ ρ T t 0( )[ ][ ]

€ 

˜ ρ = TrE ˜ ρ  T( )⇒ ˜ ˙ ρ  t( )=
1
i
TrE

˜ H in t t( ), ˜ ρ T t0( )[ ]− dt1
t0

t

∫ TrE
˜ H in t t( ), ˜ H in t t1( ), ˜ ρ T t0( )[ ][ ]

5) ASSUME SYSTEM AND ENVIRONMENT ARE INITIALLY SEPARABLE

€ 

˜ ˙ ρ t( )=
1
i

TrE
˜ H in t t( ), ˜ ρ t 0( )⊗ ˜ ρ E t 0( )[ ]− dt1

t0

t

∫ TrE
˜ H in t t( ), ˜ H in t t1( ), ˜ ρ t 0( )⊗ ˜ ρ E t 0( )[ ][ ]

6) TRICK: REPLACE THE INITIAL DENSITY MATRIX OF SYSTEM IN R.H.S. OF EQUATION!

€ 

˜ ρ t( )= ˜ ρ t 0( )+
1
i

dt1TrE
˜ H in t t1( ), ˜ ρ t0( )⊗ ˜ ρ E t0( )[ ]

t 0

t

∫



         A MODEL: QUANTUM BROWNIAN MOTION

7) NOTICE THAT THE EQUATION (VALID TO SECOND ORDER) IS LOCAL IN TIME!

€ 

˜ ˙ ρ t( )=
1
i

TrE
˜ H in t t( ), ˜ ρ t( )⊗ ˜ ρ E 0( )[ ]− dt1

0

t

∫ TrE
˜ H in t t( ), ˜ H in t t1( ), ˜ ρ  t( )⊗ ˜ ρ E 0( )[ ][ ]

+ dt1
0

t

∫ TrE
˜ H in t t( ),TrE

˜ H in t t1( ), ˜ ρ t( )⊗ ˜ ρ E 0( )[ ]( )⊗ ˜ ρ E 0( )[ ]

€ 

Fk = TrE ρE 0( )Ek( ) ; ηkk ' t, t '( )=
i
2
TrE ρE 0( ) Ek t( ),E k' t'( )[ ]( )

ν kk ' t,t '( )=
1
2
TrE ρE 0( ) E k t( ), Ek ' t '( ){ }( )− Tr E ρE 0( )Ek t( )( )Tr E ρE 0( )E k t'( )( )€ 

˙ ρ t( )=
1
i
HS ,ρ t( )[ ]+

1
i

SkFk ,ρ t( )[ ]
k
∑ −

1
2

dt1
0

t

∫ ×
kk '

∑

× −iηkk ' t,t1( ) Sk, Sk ' t1 − t( ),ρ t( ){ }[ ]+ ν kk ' t, t1( ) Sk, Sk' t1 − t( ),ρ t( )[ ][ ]( )

8) ASSUME SIMPLE INTERACTION BETWEEN SYSTEM AND ENVIRONMENT AND
GO BACK TO SCHRODINGER PICTURE FOR THE SYSTEM

€ 

H in t =
k
∑ Sk ⊗ Ek

€ 

US = exp −iH S t( ) ; ˜ ρ =US
−1ρUS



         A MODEL: QUANTUM BROWNIAN MOTION

€ 

ρE 0( )= exp −HE /kBT( )/Z ; nk = eω k / kBT −1( )−1

Fk = qk = 0 ; ηkk ' t, t'( )= δkk '
λk

2

2mkω k

sin ω k t − t'( )( )

ν kk ' t,t '( )= δkk '
λk

2

2mkωk

cos ωk t − t'( )( )1+ 2nk( )

9) NOW CONSIDER THE QUANTUM BROWNIAN MOTION MODEL (bosonic environment)

€ 

H in t = x ⊗ λk
k
∑ qk

€ 

η t( ) =
λ k

2

2m kωk

sin ωk t − t '( )( ) ;
k

∑ ν t( ) =
λ k

2

2mkωk

cos ωk t − t '( )( )1+ 2n k( ) ; J ω( ) =
k

∑
λ k

2

2mkωk

δ ω −ω k( )
k

∑

10) REWRITE MASTER EQUATION ALMOST IN FINAL FORM

€ 

˙ ρ t( )=
1
i
HS ,ρ t( )[ ]− 1

2
dt1

0

t

∫ −iη t1( ) x, x −t1( ),ρ t( ){ }[ ]+ ν t1( ) x, x −t1( ),ρ t( )[ ][ ]( )



         A MODEL: QUANTUM BROWNIAN MOTION

€ 

˙ ρ =− i HS ,ρ[ ]− i
m
2
δω 2 ( t) x, x,ρ{ }[ ]− iγ(t) x, p,ρ{ }[ ]−D(t) x, x,ρ[ ][ ]− f (t) x, p,ρ[ ][ ]

Time dependent coefficients are determined by spectral density and initial temperature

11) REPLACE x(t) IN THE R.H.S. OF THE MASTER EQUATION

€ 

˙ ρ t( )=
1
i
HS ,ρ t( )[ ]− 1

2
dt1

0

t

∫ −iη t1( ) x, x −t1( ),ρ t( ){ }[ ]+ ν t1( ) x, x −t1( ),ρ t( )[ ][ ]( )
€ 
€ 

COMMENTS:

1) EQUATION WAS DERIVED TO SECOND ORDER IN THE INTERACTION BUT IT IS IN
FACT AN EXACT EQUATION VALID TO ALL ORDERS.

B.L. Hu, J.P. Paz and Y. Zhang, Phys. Rev. D42, 3243 (1992)

2)  IN SOME CASES ANALYTIC EXPRESSIONS FOR THE TIME DEPENDENT
COEFFICIENTS CAN BE OBTAINED



Interpretation of the first two terms (renormalization and damping)

€ 

˙ ρ =− i HS +
m
2
δω 2 (t)x 2 ,ρ

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
− iγ (t) x, p,ρ{ }[ ]−D(t) x, x,ρ[ ][ ]− f (t) x, p,ρ[ ][ ]

Dressing (renormalization) Damping (relaxation)

         A MODEL: QUANTUM BROWNIAN MOTION

• Normal friction (constant         ): ohmic environment

€ 

γ(t)



         A MODEL: QUANTUM BROWNIAN MOTION

Interpretation of the last two terms (diffusion)

€ 

˙ ρ =− i HS +
m
2
δω 2 (t)x 2 ,ρ

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
− iγ (t) x, p,ρ{ }[ ]−D(t) x, x,ρ[ ][ ]− f (t) x, p,ρ[ ][ ]

Diffusion (Decoherence) Anomalous Diffusion

• Diffusion coefficients (D(t) and f(t)) depend on spectral density and temperature



         A MODEL: QUANTUM BROWNIAN MOTION

Ohmic environment

• Diffusion coefficients (D(t) and f(t)) have initial transient and
approach temperature-dependent asymptotic values



Use this to investigate:

1) What is the decoherence timescale?,

2) What are the pointer states?

         A MODEL: QUANTUM BROWNIAN MOTION

Ohmic environment in a high temperature initial state

Approximate master equation (ohmic, high temperature)

€ 

˙ ρ =− i HR ,ρ[ ]− iγ x, p,ρ{ }[ ]−D x, x,ρ[ ][ ]



SUMMARY

DECOHERENCE IS AN ESENTIAL PROCESS TO
UNDERSTAND THE QUANTUM CLASSICAL TRANSITION

PARADIGM: CLASSICALITY IS AN EMERGENT PROPERTY
INDUCED ON SUBSYSTEMS BY THEIR ENVIRONMENTS

TOOLS TO  STUDY DECOHERENCE: PHYSICS OF
QUANTUM OPERN SYSTEMS

MASTER EQUATION FOR QUANTUM BROWNIAN MOTION.
DERIVATION (PERTURBATIVE) AND PROPERTIES

NEXT CLASS: GENERAL RESULTS FOR LINEAR SYSTEMS
(DYNAMICS AND THERMODYNAMICS)
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Lecture 1: Decoherence and the quantum origin of the classical
world. Evolution of quantum open systems. Quantum Brownian
motion as a paradigm. Master equation.

Lecture 2: General results on Dynamics and Thermodynamics of
linear quantum open systems. Emergence of the laws of
thermodynamics. JOINT WORK WITH ESTEBAN MARTINEZ
arXiv:1207.4256

Lecture 3: Decoherence in Quantum Brownian Motion.
Decoherence timescales. Pointer states. Decoherence and
disentanglement. Different dynamical phases for the behavior of
quantum correlations in quantum open systems.

Lecture 4: Decoherence in quantum information processing. How
to fight against decoherence? How to characterize decoherence?
Quantum process tomography (QPT).Lecture 5: New methods for
Quantum Process Tomography. “Selective and efficient QPT”.
Theory and experimental implementation with single photons.
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         GENERAL RESULTS FOR LINEAR SYSTEMS

EVOLUTION OF THE REDUCED DENSITY MATRIX (MAP)

€ 

ρ in

€ 

ρout = Λ ρ in( )

€ 

ρout

GAUSSIAN STATE GAUSSIAN STATE

LINEAR SYSTEMS (QUADRATIC HAMILTONIANS SUCH AS QBM)

€ 

Λ x, x '; x0, x '0( )= x Λ x0 x '0( )x '
ρout x,x '( ) = dx0dx' 0 Λ x,x '; x0, x '0( )ρout x0, x ' 0( )∫

LINEAR SYSTEMS: GAUSSIAN PROPAGATOR

€ 

Λ x, x '; x0, x '0( )= exp ib1Xξ + ib2X0ξ + ib3Xξ0 + ib4X 0ξ0( )×
exp a1ξ

2 + a2ξ0
2 + a3ξξ0 + c1X

2 + c2X0
2 + c2XX0( )/N

€ 

X = x + x '
ξ = x − x '



         GENERAL RESULTS FOR LINEAR SYSTEMS

EXTRA CONDITIONS IMPOSE CONSTRAINTS ON COEFFICIENTS

LINEAR SYSTEMS: GAUSSIAN PROPAGATOR

€ 

Λ x, x '; x0, x '0( )= exp ib1Xξ + ib2X0ξ + ib3Xξ0 + ib4X 0ξ0( )×
exp a1ξ

2 + a2ξ0
2 + a3ξξ0 + c1X

2 + c2X0
2 + c2XX0( )/N

€ 

X = x + x '
ξ = x − x '

HERMITICITY

TRACE PRESERVING

€ 

c1 = c2 = c3 = 0
N = 2π /b3

€ 

Λ x, x '; x0, x '0( )= exp ib1Xξ + ib2X0ξ + ib3Xξ0 + ib4X 0ξ0( )×
exp a1ξ

2 + a2ξ0
2 + a3ξξ0( )/2πb3

POSITIVITY

€ 

relations between ai and bi

€ 

Λ* X,ξ;X0,ξ0( ) = Λ X,−ξ;X0,−ξ0( )

€ 

dX Λ X,0;X0,ξ0( )∫ = δ ξ0( )



         GENERAL RESULTS FOR LINEAR SYSTEMS

TWO MAIN RESULTS FOLLOWS DIRECTLY FROM

€ 

Λ x, x '; x0, x '0( )= exp ib1Xξ + ib2X0ξ + ib3Xξ0 + ib4X 0ξ0( )×
exp a1ξ

2 + a2ξ0
2 + a3ξξ0( )/2πb3

RESULT 1: MASTER EQUATION!

€ 

˙ ρ out x,x '( ) = dx0dx' 0
˙ Λ x,x '; x0, x '0( )ρout x0, x ' 0( )∫

€ 

˙ Λ x, x ';x0,x '0( ) = i ˙ b 1Xξ + i ˙ b 2X0ξ + i ˙ b 3Xξ0 + i ˙ b 4 X0ξ0 + ˙ a 1ξ
2 + ˙ a 2ξ0

2 + ˙ a 3ξξ0 −
˙ N 

N
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Λ x,x';x0,x'0( )

€ 

∂Λ
∂X

= ib1ξ + ib3ξ0( )Λ
∂Λ
∂ξ

= ib1X + ib2X0 + 2a2ξ + a3ξ0( )Λ

 MASTER EQUATION!!!!



         GENERAL RESULTS FOR LINEAR SYSTEMS

€ 

˙ ρ =− i HR ,ρ[ ]− iγ (t) x, p,ρ{ }[ ]− i ˜ γ (t) p, x,ρ{ }[ ]−
−D(t) x, x,ρ[ ][ ]− ˜ D (t) p, p,ρ[ ][ ] − f (t) x, p,ρ[ ][ ]

HR =
p2

2MR t( )
+

1
2

MR t( )ΩR
2 t( )x 2

THEOREM: GAUSSIANITY (LINEARITY), HERMITICITY AND PRESERVATION OF
TRACE IMPLY THAT THERE IS A MASTER EQUATION

COEFFICIENTS OF THE MASTER EQUATION DEPEND ON THOSE OF THE
PROPAGATOR (i.e., a’s and b’s).

DETERMINED BY MICROSCOPIC MODELS

QUANTUM BROWNIAN
MOTION (QBM)

€ 

˜ γ (t) = 0 = ˜ D (t); MR t( ) = m

RESULT 2: EXACT SOLUTION (SIMPLE)



         GENERAL RESULTS FOR LINEAR SYSTEMS

€ 

Λ x, x '; x0, x '0( )= exp ib1Xξ + ib2X0ξ + ib3Xξ0 + ib4X 0ξ0( )×
exp a1ξ

2 + a2ξ0
2 + a3ξξ0( )/2πb3

  

€ 

χ α,t( ) = Tr ˆ D α( )ρ t( )( ); α =
p
q
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ ; ˆ D α( ) = exp i p ˆ Q − q ˆ P ( ) /( )

RESULTS 1 AND 2 ARE VERY GENERAL

VALID FOR ARBITRARY LINEAR NETWORKS COUPLED WITH
ARBITRARY BOSONIC RESERVOIRS!!

EXACT SOLUTION: SIMPLE EXPRESSION FOR CHRACTERISTIC FUNCTION

€ 

χ α,t( ) = χ Φ t( )α,0( ) × exp − 12α
TΣ t( )α

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

Φ t( ) =
Φpp t( ) Φpq t( )
Φqp t( ) Φqq t( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ; Σ t( ) =

Σpp t( ) Σpq t( )
Σqp t( ) Σqq t( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 



         GENERAL LINEAR NETWORK

€ 

HS =
p j

2

2m
+

1
2
xiVij x j

i=1

N

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

j=1

N

∑

HAMILTONIAN OF NETWORK

€ 

HE = HEe
=

e=1

R

∑ πk,e
2

2mk

+
1
2
mkω k

2rk,e
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

k=1

M

∑
e=1

R

∑

HAMILTONIAN OF THE R-ENVIRONMENTS€ 

HSE = ck,i
(e ) xi rk,e

k=1

M

∑
i∈Se

∑
1e=1

R

∑

EACH ENVIRONMENT INTERACTS WITH
A DIFFERENT REGION OF THE SYSTEM

€ 

S1
€ 

SR

€ 

S2

€ 

Iij ω( ) = Iij
(e ) ω( ) =

ck,i
(e )ck, j

(e )

2mkω k

δ ω −ω k( )
k=1

M

∑
1e=1

R

∑
1e=1

R

∑

EACH ENVIRONMENT HAS DIFFERENT SPECTRAL
DENSITY AND TEMPERATURE

€ 

Te; e =1,...,R

€ 

N × N matrices, N = number of deg rees of freedom   

€ 

 x =

x1
x2
.
.

xN

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

;  p =

p1
p2
.
.

pN

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 



         GENERAL RESULTS FOR LINEAR SYSTEMS

  

€ 

˙ ρ =− i HR ,ρ[ ]− iγ ij (t) xi, p j ,ρ{ }[ ] −Dij (t) xi, x j ,ρ[ ][ ]− f ij (t) xi, p j ,ρ[ ][ ]
HR =

 p T  p 
2m

+
1
2
 x TVR t( )  x 

MASTER EQUATION FOR GENERALIZED QBM

EXACT SOLUTION FOR FOR GENERALIZED QBM

€ 

Φ t( ) =
Φ00 t( ) Φ01 t( )
Φ10 t( ) Φ11 t( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2N×2N

; Σ t( ) =
Σ00 t( ) Σ01 t( )
Σ10 t( ) Σ11 t( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2N×2N

€ 

χ α,t( ) = χ Φ t( )α,0( ) × exp − 12α
TΣ t( )α

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

  

€ 

α =

 p 
 x 
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 
2N

EXPLICIT FORM OF THE TIME DEPENDENT COEFFICIENTS CAN BE OBTAINED

EXACT SOLUTION FOR FOR GENERALIZED QBM



         GENERAL RESULTS FOR LINEAR SYSTEMS

€ 

µ t( ) = dω I ω( )
ω

cos ωt( )
0

∞

∫ ; ν t( ) = dω I(e ) ω( ) cos ωt( )
0

∞

∫ coth ω
2kBTe

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

e=1

R

∑

NOISE AND DISIPATION KERMELS (NxN MATRICES)

THEN THE COEFFICIENTS OF THE EXACT SOLUTION ARE

€ 

Φ t( ) =
˙ G t( ) ˙ ̇ G t( )

G t( ) ˙ G t( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2N×2N

; Σ t( ) =
Σ00 t( ) Σ01 t( )
Σ10 t( ) Σ11 t( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2N×2N

Σnm t( ) = dt1dt2 G(n ) t1( )ν t1 − t2( ) G(m ) t2( )
0

t

∫
0

t

∫
€ 

χ α,t( ) = χ Φ t( )α,0( ) × exp − 12α
TΣ t( )α

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

  

€ 

α =

 p 
 x 
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 
2N

SOLVE INTEGRO-DIFERENTIAL EQUATION

€ 

˙ ̇ G t( ) +VRG t( ) + 2 dt 'µ t − t'( ) ˙ G t'( ) = 0
0

t

∫ ; G 0( ) = 0, ˙ G 0( ) =1; VR = V − 2µ 0( )



         GENERAL RESULTS FOR LINEAR SYSTEMS

VERY USEFUL TO STUDY EMERGENCE OF THERMODYNAMICAL LAWS!

WE WILL ANALYZE THE STATIONARY REGIME (LONG TIMES)

€ 

Φ ∞( ) =
˙ G ∞( ) ˙ ̇ G ∞( )

G ∞( ) ˙ G ∞( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2N×2N

= 0; Σ ∞( ) =
Σ00 ∞( ) Σ01 ∞( )
Σ10 ∞( ) Σ11 ∞( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2N×2N

Σnm ∞( ) =ℜe dω ω n +min−m ˆ G iω( ) ˜ ν ω( ) ˆ G −iω( )
0

∞

∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

˜ ν ω( ) = I(e )

e =1

R

∑ ω( ) coth ω
2kBTe

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

χ α,t( ) = χ Φ t( )α,0( ) × exp − 12α
TΣ t( )α

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ →exp −

1
2
αTΣ ∞( )α

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

SOLVE EQUATION USING LAPLACE’S TRANSFORM

€ 

ˆ G s( ) = s2 ˆ 1 +VR + 2s ˆ µ s( )( )
−1

; ˆ µ s( ) = dω I ω( ) s2

s2 +ω 2
0

∞

∫



         GENERAL LINEAR NETWORK

€ 

d HR
.

dt
= Tr ˙ ρ HR( ) = Tr VRΣ10 ∞( )( ) = VRΣ10 ∞( )( )ii

i∈Sa

∑
a=1

R

∑

ENERGY CHANGE OF SYSTEM

€ 

S1
€ 

SR

€ 

S2

FIRST LAW OF THERMODYNAMICS

€ 

d HR
.

dt
= ˙ Q a;

a =1

R

∑ ˙ Q a = Tr PSa
VRΣ10 ∞( )( ); Σ10 ∞( ) = xpT

˙ Q a = Heat from Sa to system; PSa
= Projector onto Sa

€ 

˙ Q a = dω ω Qa,b ω( ) coth ω
2kBTa

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

∞

∫
b =1

R

∑

€ 

Qa,b ω( ) = Heat transfer matrix

Qa,b ω( ) =ℑm Tr PSaVRG iω( )I(b )G −iω( )( )( )
Qa,b ω( ) = −2πTr I(b )G iω( )I(b )G −iω( )( )

€ 

˙ Q a,b ω( ) ≤ 0; a ≠ b
˙ Q a,b ω( ) = ˙ Q b,a ω( )

˙ Q a,b ω( ) = 0
a =1

R

∑



         GENERAL LINEAR NETWORK

€ 

S1
€ 

SR

€ 

S2

€ 

˙ Q a = dω ω Qa,b ω( )
b≠a

R

∑ coth ω
2kBTb

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − coth ω

2kBTa

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

∞

∫

€ 

if Ta ≥Tb ,∀ b⇒ ˙ Q a ≥ 0!!!; if Ta ≤ Tb,∀ b⇒ ˙ Q a ≤ 0!!!;

also dS
dt

=
˙ Q a
Ta

≤ 0
e =1

R

∑

SECOND LAW: HEAT FLOWS FROM HOT TO COLD

€ 

˙ Q a,b ω( ) = 0
a =1

R

∑ ⇒

HOTTEST
RESERVOIR

ALWAYS INJECTS
ENERGY (COOLS

DOWN)

COLDEST RESERVOIR
ALWAYS EXTRACTS
ENERGY (HEATS UP)

RESULTS CAN BE GENERALIZED:

1) MULTIPLE ENVIRONMENTS IN EACH REGION

2) OVERLAPPING REGIOS

NO-GO THEOREM FOR LINEAR QUANTUM ABSORPTION REFRIGERATOR!! (QAR were
proposed by Kosloff et al -PRL, 2012- using nonlinear system: non-linearity is essential!!!)



         GENERAL LINEAR NETWORK

€ 

S1
€ 

SR

€ 

˙ Q 1 = dω ω Q1,2 ω( ) coth ω
2kBT2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − coth ω

2kBT1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

∞

∫LOW
TEMPERATURES

THIRD LAW IS OBTAINED
FOR SUB-OHMIC

(p<1), OHMIC (p=1)
AND SUPER-OHMIC

(p>1)
ENVIRONMENTS

THIRD LAW (UNATTAINABILITY OF ZERO TEMPERATURE)

SIMPLEST CASE: TWO RESERVOIRS WITH
IDENTICAL SPECTRAL DENSITIES

€ 

I(1,2) ω( ) = γω P θ ω( ) MN ×N
(1,2)

€ 

˙ Q 1 = 2π γ 2 dω ω1+2P θ 2 ω( ) G iω( )
2

coth ω
2kBT2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − coth ω

2kBT1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

∞

∫

€ 

˙ Q 1 = C T 1+2PΔT; T =
T1 + T2

2
; ΔT = T1 −T2

dS1

dt
=

˙ Q 1
T1

= C' T 2PΔT →0, if p ≥ 0



SUMMARY

GENERAL RESULTS FOR ARBITRARY LINEAR OPEN
NETWORKS: MASTER EQUATION AND EXACT SOLUTION

STUDY LONG TIME STATIONARY LIMIT

DERIVE THE LAWS OF THERMODYNAMICS

NO-GO THEOREM FOR QUANTUM ABSORPTION
REFRIGERATOR

THIRD LAW IMPOSES CONSTRAINT ON SPECTRAL
DENSITY (LOW FREQUENCIES)
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PLAN

Lecture 1: Decoherence and the quantum origin of the classical
world. Evolution of quantum open systems. Quantum Brownian
motion as a paradigm. Master equation.

Lecture 2: General results on Dynamics and Thermodynamics of
linear quantum open systems. Emergence of the laws of
thermodynamics. E.A. MARTINEZ & J.P.P. arXiv:12074256

Lecture 3: Decoherence in Quantum Brownian Motion.
Decoherence timescales. Pointer states. Decoherence and
disentanglement. Different dynamical phases for the behavior of
quantum correlations in quantum open systems.

Lecture 4: Decoherence in quantum information processing. How
to fight against decoherence? How to characterize decoherence?
Quantum process tomography (QPT).

Lecture 5: New methods for Quantum Process Tomography.
“Selective and efficient QPT”. Theory and experimental
implementation with single photons.



         DECOHERENCE: AN OVERVIEW

•POINTER STATES: W.Zurek, S. Habib & J.P. Paz, PRL 70, 1187 (1993), J.P. Paz & W. Zurek, PRL 82, 5181 (1999)

•TIMESCALES: J.P. Paz, S. Habib & W. Zurek, PRD 47, 488 (1993), J. Anglin, J.P. Paz & W. Zurek, PRA 55, 4041
(1997)

•CONTROLLED DECOHERENCE EXPERIMENTS: Zeillinger et al (Vienna) PRL 90 160401 (2003), Haroche et al
(ENS) PRL 77, 4887 (1997), Wineland et al (NIST), Nature 403, 269 (2000).

• DECOHERENCE AND THE QUANTUM-CLASSICAL TRANSITION:
YES: HILBERT SPACE IS
HUGE, BUT MOST STATES
ARE UNSTABLE!! (DECAY
VERY FAST INTO MIXTURES)

CLASSICAL STATES: A
(VERY!) SMALL SUBSET.
THEY ARE THE
POINTER STATES OF
THE SYSTEM
DYNAMICALLY CHOSEN
BY THE ENVIRONMENT



Use this to investigate:

1) What is the decoherence timescale?,

2) What are the pointer states?

         A MODEL: QUANTUM BROWNIAN MOTION

Ohmic environment in a high temperature initial state

Approximate master equation (ohmic, high temperature)

€ 

˙ ρ =− i HR ,ρ[ ]− iγ x, p,ρ{ }[ ]−D x, x,ρ[ ][ ]



DECOHERENCE IN QUANTUM BROWNIAN MOTION: MAIN RESULTS ARE BETTER
SEEN REPRESENTING THE STATE IN PHASE SPACE VIA WIGNER FUNCTIONS

  

€ 

W (x, p) =
dy
2π

e ipy /∫ x − y /2 ρ x + y /2

• PROPERTIES:

W(x,p) is real

Integral along lines give all marginal distributions:

  

€ 

dx dpW1(x, p)W 2 (x, p) =
1
2π

Tr(ρ1∫ ρ2 )Use it to compute inner products as:

€ 

dx dpW (x, p) = Probabi lity(aX + bP = c )∫

€ 

ax + bp = c

         DECOHERENCE IN QUANTUM BROWNIAN MOTION

MASTER EQUATION CAN BE REWRITTEN FOR THE WIGNER FUNCTION: IT HAS THE
FORM OF A FOKER-PLANCK EQUATION

€ 

˙ W = H0 ,W{ }MB + γ∂ p pW( )+ D∂ 2
pp W + f ∂ 2

xp W



HOW DOES THE WIGNER FUNCTION OF A QUANTUM STATE LOOK LIKE?:
SUPERPOSITION OF TWO GAUSSIAN STATES

  

€ 

˙ W = H0 ,W{ }MB + D∂2
pp W +

OSCILLATIONS IN WIGNER
FUNCTION: THE SIGNAL OF

QUANTUM INTERFERENCE. HOW
DOES DECOHERENCE AFFECTS THIS

STATE?

  

€ 

Dis tan ce L

Wavelength λp =

L

         DECOHERENCE IN QUANTUM BROWNIAN MOTION



  

€ 

˙ W = H0 ,W{ }MB + D∂2
pp W +

  

€ 

Dis tan ce L

Wavelength λp =

L

  

€ 

˙ W = H0 ,W{ }MB
+ D∂2

pp W +

W osc ≈ A(t)cos(k p p)⇒ A(t) ≈ exp(−Γt)

Γ = Dkp
2

DECOHERENCE RATE:
MUCH LARGER THAN

RELAXATION RATE  

€ 

Γ =DL2 /2 , D = 2m γ kBT, λDB =/ 2m kBT

⇒Γ =γ L /λDB( )
2
≈1040 γ, m =1gr, T = 300K, L =1cm

         DECOHERENCE IN QUANTUM BROWNIAN MOTION

MASTER EQUATION CAN BE REWRITTEN FOR THE WIGNER FUNCTION: IT HAS THE
FORM OF A FOKER-PLANCK EQUATION

€ 

˙ W = H0 ,W{ }MB + γ∂ p pW( )+ D∂ 2
pp W + f ∂ 2

xp W



EVOLUTION OF WIGNER FUNCTION

€ 

ν

NOTICE: NOT ALL STATES ARE AFFECTED BY THE
ENVIRONMENT IN THE SAME WAY (SOME

SUPERPOSITIONS LAST LONGER THAN OTHERS)

         POINTER STATES, DECOHERENCE TIMESCALE



         POINTER STATES, DECOHERENCE TIMESCALE

NOT ALL STATES ARE AFFECTED BY DECOHERENCE IN THE SAME WAY

QUESTION: WHAT ARE THE STATES WHICH ARE MOST ROBUST UNDER
DECOHERENCE?

POINTER STATES: STATES WHICH ARE MINIMALLY AFFECTED BY THE INTERACTION
WITH THE ENVIRONMENT

AN OPERATIONAL DEFINITION OF POINTER STATES:

“PREDICTABILITY SIEVE”

€ 

Ψ(0) Ψ(0)

€ 

ρ(t)

Initial state of the system (pure) State of system at time t (mixed)

t

Measure degradation of system’s state with entropy (von Neuman) or purity decay

€ 

SVN (t) = −Tr ρ(t)ln ρ(t)( )( ), ζ (t) = Tr ρ2(t)( )



         POINTER STATES, DECOHERENCE TIMESCALE

€ 

SVN (t) = −Tr ρ(t)ln ρ(t)( )( ), ζ (t) = Tr ρ2(t)( )

These quantities depend on time AND on the initial state

PREDICTABILITY SIEVE: FIND THE INITIAL STATES SUCH THAT THESE QUANTITIES
ARE MINIMIZED (FOR A DYNAMICAL RANGE OF TIMES)

PREDICTABILITY SIEVE IN A PHYSICALLY INTERESTING CASE?

ANALIZE QUANTUM BROWNIAN MOTION

USE MASTER EQUATION TO ESTIMATE PURITY DECAY OR ENTROPY GROWTH

€ 

˙ ρ =− i HR +
m
2
δω 2(t)x 2,ρ

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
− iγ(t) x, p,ρ{ }[ ]−D(t) x, x,ρ[ ][ ]− f (t) x, p,ρ[ ][ ]

€ 

˙ ζ = 2Tr ˙ ρ ρ( ) = 2γζ − 2DTr x,ρ[ ]2( ) + 2 fTr x,ρ[ ] p,ρ[ ]( )



Minimize over initial state: Pointer states for QBM are minimally uncertainty coherent states!
W.Zurek, J.P.P & S. Habib, PRL 70, 1187 (1993)

A SIMPLE SOLUTION FROM THE PREDICTABILITY SIEVE CRITERION

€ 

˙ ζ = 2Tr ˙ ρ ρ( ) = 2γζ + 2DTr x,ρ[ ]2( ) + 2 fTr x,ρ[ ] p,ρ[ ]( )

Approximations I: Neglect friction, use asymptotic form of coefficients, assume
initial state is pure and apply perturbation theory:

€ 

ζ (T) −ζ (0) = 2D dt
0

T

∫ Tr x(t),ρ[ ]2( )

         POINTER STATES, DECOHERENCE TIMESCALE

€ 

ζ (T) = ζ (0) − 2D Δx 2 +
1

m2ω 2 Δp
2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Approximations II: State remains approximately pure, average over oscillation period

€ 

ζ (t)

“momentum eigenstate”

“position eigenstate”



1) Dynamical regime (QBM): Pointer basis results from interplay between system
and environment

3) “Slow environment” regime: The evolution of the environment is very “slow” (adiabatic
environment): Pointer states are eigenstates of the Hamiltonian of the system! The

environment only “learns” about properties of system which are non-vanishing when
averaged in time. J.P. Paz & W.Zurek, PRL 82, 5181 (1999)

€ 

ζ (t)

2) “Slow system” regime: (Quantum Measurement): System’s evolution is negligible,
Pointer basis is determined by the interaction Hamiltonian (position in QBM)

         POINTER STATES, DECOHERENCE TIMESCALE

WARNING: DIFFERENT POINTER STATES IN DIFFERENT REGIMES!

TAILOR MADE POINTER STATES?  Environmental engeneering…
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PLAN

Lecture 1: Decoherence and the quantum origin of the classical
world. Evolution of quantum open systems. Quantum Brownian
motion as a paradigm. Master equation.

Lecture 2: General results on Dynamics and Thermodynamics of
linear quantum open systems. Emergence of the laws of
thermodynamics. E.A. MARTINEZ & J.P.P. arXiv:12074256

Lecture 3: Decoherence in Quantum Brownian Motion.
Decoherence timescales. Pointer states. Decoherence and
disentanglement. Different dynamical phases for the behavior of
quantum correlations in quantum open systems.

Lecture 4: Decoherence in quantum information processing. How
to fight against decoherence? How to characterize decoherence?
Quantum process tomography (QPT).

Lecture 5: New methods for Quantum Process Tomography.
“Selective and efficient QPT”. Theory and experimental
implementation with single photons.



WHY DON’T WE HAVE QUANTUM
TECHNOLOGIES (ENTANGLEMENT

BASED) AROUND US?

DUE TO DECOHERENCE
(induces disentanglement, quantum-classical transition)

HOW DOES ENTANGLEMENT BEHAVE
IN A QUANTUM OPEN SYSTEM?

DOES IT DISSAPEAR? CAN IT PERSIST
FOR LONG TIMES?…

ENTANGLEMENT IS A RESOURCE



“Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?
A. Einstein, B. Podolsky, N. Rosen.

Physical Review  47, 1935, 777-780.

Entangled states of two particles (two modes)

  

€ 

 r =  r 1 −
 r 2 ;
 
P =
 
P 1 +
 
P 2

Ψ 12 =
 r =  r 0 ;

 
P =
 
P 0

Ψ
 r ,
 
P ( ) = δ

 r −  r 0( )δ
 
P −
 
P 0( )

1 2

These are non-physical (idealized) states
A set of physical (yet entangled) states: Two mode squeezed states.

€ 

a1
2

= x1
2

+ i p1
2
; Ψ 12 = exp r a1

+a2
+ − a1a2( )( ) 0 12

mΩδx−
δp−

=
δp+

mΩδx+

= exp 2r( )

€ 

δx−€ 

δp−

€ 

δx+

€ 

δp+
Entangled Gaussian states
Measure of entanglement

E=2r
Entanglement can be transfered to spins by
local operations and then it can be used…



Environment

System

…

Environment

…

System

Environment

System

… …

A SIMPLE MODEL WITH NON-TRIVAL PHASES
Two oscillators & a common reservoir.  Long time

evolution of entanglement.

A PROPOSED ION TRAP EXPERIMENT



         THE ENTANGLEMENT MEASURE

SIMPLICITY: GAUSSIAN INITIAL STATES (GOOD ENTANGLEMENT MEASURE)

Entanglement measure: Logarithmic Negativity

Environment

System

…

        THE MODEL:

  

€ 

Vij t( ) =
1
2

ri,rj{ } − ri rj ;
 r = x1, p1,x2, p2( )

€ 

EN =max 0,−ln 2νmin( ){ }
νmin = lowest symplectic eigenvalue

of partially transposed Vij



        THE SOLUTION

Environment

ALMOST IDENTICAL TO THE USUAL “QUANTUM BROWNIAN MOTION” MODEL

INTEGRATING OUT (TRACING OUT) THE ENVIRONMENT WE OBTAIN AN EXACT MASTER EQUATION

Damping term Normal diffusion Anomalous diffusionRenormalized
Hamiltonian

Ohmic environment

€ 

J ω( ) =
λn
2

2mnω n

δ ω −ω n( ) =
n
∑ 2mγ ω

π
θ Λ −ω( ) ; γ t( ) →γ t >> Λ−1( )

€ 

high T
D→ 2mγT

f →−
2γT
πΩ

log Λ +Ω
Λ−Ω

€ 

T = 0

D→ mγΩ+
2mγ 2

π
2log Λ

Ω
−1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

f → 2γ
π
log Λ

Ω

Asymptotic regime:                  ,

Resonant oscillators

Symmetric coupling

Resonant oscillators

€ 

c+− =
ω1
2 −ω 2

2

2



REMEMBER: A PROPERTY OF THE SOLUTION

€ 

K =
p2

2m
=

D
4mγ

V =
1
2
mΩR

2 x 2 =
D
4mγ

−
f
2

€ 

rc =
1
2
log mΩRΔx

Δp
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

1
4
log 1− 2mγ f

D
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ASYMPTOTIC STATE VIOLATES
EQUIPARTITION!

ASYMPTOTIC STATE IS
SQUEEZED!!

QUANTUM WEIRDNESS??

FOLLOWS FROM MASTER EQUATION… COEFFICIENT f IS THE ONE TO BLAME!

CONSIDER THE ASYMPTOTIC STATE FOR QUANTUM BROWNIAN MOTION

€ 

Δp =
D
2γ
; ΩRΔx =

D
2m2γ

−
f
m

EXACT MASTER EQUATION B.L.
Hu, J.P. Paz and Y. Zhang, Phys.

Rev. D42, 3243 (1992)



In the asymptotic regime:

The equilibrium state is
squeezed due to f  (low
temperature regime)

THEN THE ASYMPTOTIC FORM OF THE COVARIANCE MATRIX IS

V =

Free oscillator of
mass m and
frequency

Correlations between the
oscillators are zero in the
asymptotic regime

Equilibrium moments
of        oscillator

COMPUTING ENTANGLEMENT FOR LONG TIMES



EVALUATE ANALYTICALLY THE LOGARITHMIC NEGATIVITY FOR THE       OSCILLATORS

ENTANGLEMENT IN THE ASYMPTOTIC STATE

€ 

˜ E N → Maximal Sqeezing( ) − Entropy( )
ΔEN → Minimal Sqeezing( )

WE CONCLUDE THAT THERE ARE THREE QUALITATIVELY DIFFERENT ASYMPTOTIC BEHAVIORS!!

Mean value:

Amplitude of oscillations:

Where:

Squeezing of the        oscillator

Squeezing of equilibrium for the
oscillator



Analytical expressions can be obtained for the asymptotic values of the coefficients
of the master equation for an ohmic environment. We can use them to construct a
phase diagram

Phase diagram (complete description of the asymptotic behavior) :

Accurately describe all numerically simulations !

         THREE DYNAMICAL PHASES FOR ENTANGLEMENT



Interesting points in the phase diagram :

€ 

T0 is such that
  

€ 

Δx T=T0
=


2mΩ

€ 

Δx

€ 

r1 is such that

  

€ 

r1 = log


2mΩ

Δx T = 0( )

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟   

€ 

r2 = log
Δp T = 0( )

mΩ
2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

€ 

r1 =
1
2
log π

2
1− γ 2 /Ω2

arccos γ /Ω( )

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

€ 

r1 =
1
2
log 1− 4γ

2 /Ω2

1− γ 2 /Ω2
arccos γ /Ω( ) +

4
π
γ
Ω
log Λ

Ω

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

         THREE DYNAMICAL PHASES FOR ENTANGLEMENT



         THREE DYNAMICAL PHASES FOR ENTANGLEMENT

SDR region (also non-Markovian) decreases width for ohmic environment as
.

€ 

1
Λ

Entanglement in the NSD Island COMES FROM the squeezing of
the equilibrium state! (from the environment)

NSD Island: Non Markovian, non perturbative

SD region: entanglement dies because entropy is too large.

NSD “continent”: entanglement persists because it is in a protected state.

€ 

˜ E N → Maximal Sqeezing( ) − Entropy( )
ΔEN → Minimal Sqeezing( )



HOW TO OBSERVE THESE PHASES?

Environment

…

System System

System System

€ 

24Mg

€ 

24Mg

€ 

9Be

€ 

ωx =1.68ωz ⇒ rcrit ≈ 0.75, Scrit ≈ 0.32
ωx = 2.2ωz ⇒ rcrit ≈ 0.47, Scrit ≈ 0.40

A ROUGH GUIDE THROUGH THE EXPERIMENT

• Three ions are cooled, y-potential is tight. Radial (x)
modes are used for the simulation.

• Then central ion is cooled continuously. This cools two
normal modes. “Temperature”: free parameter

• Squeezing of radial mode is created by varying x-trap
frequency. Initial squeezing is free parameter.

• Final state dispersions are measured



SUMMARY

TIMESCALES FOR DECOHERENCE: SHORTEST IN THE
MACROSCOPIC DOMAIN

PREFERRED STATES: PREDICTABILITY SIEVE

DECAY OF ENTANGLEMENT: NONTRIVIAL DYNAMICAL
PHASES (EXPERIMENTALLY OBSERVABLE IN ION
TRAPS?)

DECAY OF OTHER QUANTUM CORRELATIONS (DISCORD):
N. FREITAS AND J.P.P., |Dynamics of Quantum Discord of Two
Oscillators Coupled With the Same Environment”, Phys. Rev. A85,
032118  (2012)



MOST GENERAL EVOLUTION OF TWO INTERACTING SUBSYSTEMS

€ 

ρB

€ 

UAB

€ 

ρAB (T)

€ 

ρA

€ 

ρB 0( ) = ΨB (0) ΨB (0) ;

Ab = φb UAB ΨB (0) , Ab
+Ab

b
∑ = I

ρA (T) = Ab ρA (0) Ab
+

b
∑

KRAUSS REPRESENTATION

ANOTHER LOOK AT THE EVOLUTION OF
QUANTUM OPEN SYSTEMS: INPUT-OUTPUT

€ 

ρA (T) = Tr UABρA (0)⊗ ρB (0)UAB
+( )

REDUCED DENSITY
MATRIX OF SUB-

SYSTEM

TIME EVOLUTION OF SUB-SYSTEM IS ENFORCED BY A LINEAR, TRACE
PRESERVING, COMPLETELY POSITIVE MAP



HOW GENERAL IS THIS RESULT?

€ 

ρB

€ 

UAB

€ 

ρAB (T)

€ 

ρA

€ 

ρA (T) = Ab ρA (0) Ab
+, Ab

+Ab
b
∑ = I

b
∑

ANOTHER LOOK AT THE EVOLUTION OF
QUANTUM OPEN SYSTEMS: INPUT-OUTPUT

€ 

ρA (T) = Tr UABρA (0)⊗ ρB (0)UAB
+( )

VALID IF INITIAL
STATE OF THE

ENVIRONMENT IS
MIXED (OBVIOUS)

KRAUSS FORM IF AND ONLY IF THE INITIAL STATE OF (A,B) HAS ZERO
DISCORD (ONLY CLASSICAL CORRELATIONS); Lidar (2009)

€ 

ρA (0) = pkρA ,k (0)⊗ρB ,k (0)
k
∑

Tr ρB ,k (0)ρB ,k' (0)( ) = 0 if k ≠ k'



QUANTUM EVOLUTION AS A LINEAR MAP

€ 

ρin

€ 

ρout = Λ ρin( )

€ 

ρout

A QUANTUM PROCESS IS A LINEAR MAP (PRESERVING HERMITICITY,
TRACE AND POSITIVITY)

€ 

ρout = Λ ρin( ) = χabEb ρin Ea
+

ab
∑

€ 

P0 = I, P1 = X, P2 =Y, P3 = Z
Ea = Pm1 ⊗ Pm2 ⊗ ........⊗ Pmn

E0 = I1⊗ I2 ⊗ ........⊗ In

€ 

Tr EaEb( ) = Dδab

ANY LINEAR MAP IS DEFINED BY ITS ‘CHI-MATRIX’

PROPERTIES OF THE MAP ARE IN
ONE TO ONE CORRESPONDENCE

WITH PROPERTIES OF ITS ‘CHI-
MATRIX’



€ 

ρin

€ 

ρout = Λ ρin( )

€ 

ρout

€ 

χmnEm
+En

mn
∑ = I

• MAP IS HERMITIAN

• MAP PRESERVES TRACE

€ 

χmn = χnm
*

MAP           IS COMPLETELY POSITIVE (CP)

€ 

Λ ρ( )

€ 

χabMATRIX             IS POSITIVE

€ 

χab =UacDcUcb
+

€ 

Λ ρ( ) = DcAcρAc
+

a
∑

Ac = UbcEb
b
∑

 KRAUS FORM OF THE MAP

€ 

ρout = Λ ρin( ) = χabEb ρin Ea
+

ab
∑

ANY LINEAR HERMITIAN MAP
IS THE DIFFERENCE OF TWO

CP MAPS



€ 

ρout = 1− p( ) ρin + p ZρinZ

THE NEED FOR QUANTUM PROCESS TOMOGRAPHY

IF YOU KNOW THE KRAUSS REPRESENTATION THEN YOU CAN
DEVISE GOOD ERROR CORRECTION STRATEGIES

€ 

H

€ 

H

€ 

H

€ 

H

€ 

Prob(I) =1− p
Prob(Z) = p

€ 

H

€ 

H

€ 

H

€ 

H€ 

α 0 + β 1

€ 

0

€ 

0 € 

ρout

€ 

ρout = ρin +O(p2), F = Tr(ρinρin ) =1−O(p2)

FIDELITY GOES FROM LINEAR TO QUADRATIC IN p!

BUT WHAT IF YOU DO NOT KNOW THE KRAUSS OPERATORS?

NEED TO KNOW YOUR ENEMY TO BE ABLE TO DEFEAT HIM

QUANTUM PROCESS TOMOGRAPHY



WHY IS QUANTUM PROCESS TOMOGRAPHY HARD?

€ 

ρout = Λ ρin( ) = χabEb ρin Ea
+

ab
∑ , χabEa

+Eb
ab
∑ = I

•1) THERE ARE EXPONENTIALLY MANY COEFFICIENTS

(i.e. There are                     of them where              )

• 2) TO FIND OUT ANY ONE OF THEM WE NEED EXPONENTIAL RESOURCES

€ 

χmn

€ 

D2 × D2

€ 

D = 2n

• EXPERIMENTALLY DETERMINE “TRANSITION PROBABILITIES”

€ 

Pik = Tr ρkΛ ρi( )( )

€ 

Pik = χmnTr ρkEn ρiEm
+( )

nm
∑

• FIND            INVERTING (HUGE) LINEAR SYSTEM.

“STANDARD QUANTUM PROCESS TOMOGRAPHY”
(NIELSEN & CHUANG, CHAPTER 10)

€ 

χmn

  STANDARD QUANTUM PROCESS TOMOGRAPHY (SQPT)

Chapter 10, Nielsen & Chuang’s book



QUANTUM PROCESS TOMOGRAPHY IS HARD

LECTURE 5

ARE THERE GOOD (EFFICIENT) METHODS FOR
QUANTUM PROCESS TOMOGRAPHY?

YES (FOR PARTIAL QPT, EFFICIENT METHODS TO
EXTRACT USEFUL INFORMATION)



JUAN PABLO PAZ
Quantum Foundations and Information @ Buenos Aires

QUFIBA: http://www.qufiba.df.uba.ar
Departamento de Fisica Juan José Giambiagi, FCEyN, UBA, Argentina

APLICATIONS OF QUANTUM
MECHANICS

CUERNAVACA, MEXICO
JULY 2012

QUANTUM OPEN SYSTEMS,
DECOHERENCE AND QUANTUM

PROCESS TOMOGRAPHY



PLAN

Lecture 1: Decoherence and the quantum origin of the classical
world. Evolution of quantum open systems. Quantum Brownian
motion as a paradigm. Master equation.

Lecture 2: General results on Dynamics and Thermodynamics of
linear quantum open systems. Emergence of the laws of
thermodynamics. E.A. MARTINEZ & J.P.P. arXiv:12074256

Lecture 3: Decoherence in Quantum Brownian Motion.
Decoherence timescales. Pointer states. Decoherence and
disentanglement. Different dynamical phases for the behavior of
quantum correlations in quantum open systems.

Lecture 4: Decoherence in quantum information processing. How
to fight against decoherence? How to characterize decoherence?
Quantum process tomography (QPT).

Lecture 5: New methods for Quantum Process Tomography.
“Selective and efficient QPT”. Theory and experimental
implementation with single photons.



HOW TO FIGHT AGAINST DECOHERENCEThis talk
 QUANTUM PROCESS TOMOGRAPHY (QPT):

• What is QPT? Why is it necessary? Why is it hard? Standard QPT.

• A new method: Selective and Efficient Quantum Process Tomography (SEQPT).

•  First experiments @ Buenos Aires

An improved quantum algorithm for process tomography AND its
experimental implementation on a 2-qubit system (2 qubits in 1

photon)



HOW TO FIGHT AGAINST DECOHERENCEWHAT IS QUANTUM PROCESS TOMOGRAPHY?

€ 

ρin

€ 

ρout = Λ ρin( )

€ 

ρout

A QUANTUM PROCESS IS A LINEAR MAP
(PRESERVING HERMITICITY, TRACE AND

POSITIVITY)

ANY LINEAR MAP IS DEFINED BY ITS
‘CHI-MATRIX’

€ 

χmnEm
+En

mn
∑ = I

• MAP IS HERMITIAN

• MAP PRESERVES TRACE

€ 

χmn = χnm
*

MAP           IS COMPLETELY POSITIVE (CP)

€ 

Λ ρ( )

€ 

χmnMATRIX             IS POSITIVE

€ 

ρout = Λ ρin( ) = χmnEn ρin Em
+

nm
∑

€ 

P0 = I, P1 = X, P2 =Y, P3 = Z
Em = Pm1 ⊗ Pm2 ⊗ ........⊗ Pmn

E0 = I1 ⊗ I2 ⊗ ........⊗ In

€ 

Tr EmEn( ) = Dδmn



€ 

ρout = 1− p( ) ρin + p ZρinZ

IMPORTANCE OF QUANTUM PROCESS TOMOGRAPHY
a) FUNDAMENTAL

b) NECESSARY TO AVOID DECOHERENCE

€ 

H

€ 

H

€ 

H

€ 

H

€ 

Prob(I) =1− p
Prob(Z) = p

€ 

H

€ 

H

€ 

H

€ 

H€ 

α 0 + β 1

€ 

0

€ 

0 € 

ρout

€ 

ρout = ρin +O(p2), F = Tr(ρinρin ) =1−O(p2)

ERRORS MAY BE CORRECTED (fidelity goes from linear to quadratic in p)

BUT TO DO THAT IT IS NECESSARY TO CHARACTERIZE THE
TYPICAL ERRORS AND FOR THIS WE NEED QUANTUM PROCESS

TOMOGRAPHY (QPT)



HOW TO FIGHT AGAINST DECOHERENCEWHY IS QUANTUM PROCESS TOMOGRAPHY HARD?

€ 

ρout = Λ ρin( ) = χmnEn ρin Em
+

nm
∑ , χmnEm

+En
mn
∑ = I

•1) THERE ARE EXPONENTIALLY MANY COEFFICIENTS

(i.e. There are                     of them where              )

• 2) TO FIND OUT ANY ONE OF THEM WE NEED EXPONENTIAL RESOURCES

€ 

χmn

€ 

D2 × D2

€ 

D = 2n

• EXPERIMENTALLY DETERMINE “TRANSITION PROBABILITIES”

€ 

Pik = Tr ρkΛ ρi( )( )

€ 

Pik = χmnTr ρkEn ρiEm
+( )

nm
∑

• FIND            INVERTING (HUGE) LINEAR SYSTEM.

“STANDARD QUANTUM PROCESS TOMOGRAPHY”
(NIELSEN & CHUANG, CHAPTER 10)

€ 

χmn

  STANDARD QUANTUM PROCESS TOMOGRAPHY (SQPT)

Chapter 10, Nielsen & Chuang’s book



HOW TO FIGHT AGAINST DECOHERENCEQUANTUM PROCESS TOMOGRAPHY IS HARD!
QUANTUM RESOURCES (qbits, operations, state preparations, measurements, etc):

• prepare          initial states and detect           final states

• repeat experiments (exponentially) many times to geta  fixed precision in

 CLASSICAL RESOURCES (data processing in classical computers):

• invert an exponentially large (linear) system

€ 

χmn

€ 

D2

€ 

D2

• THIS IS THE METHOD UDED IN PRACTICE NOWADAYS

€ 

X € 

X

€ 

X

Average fidelity: 0.7



Realization of the quantum Tofoli gate with
trapped ions” T  Monz, K. Kim, W. Hänsel, M.
Riebe, A. S. Villar, P. Schindler, M. Chwalla,
M. Hennrich, and R. Blatt,  Physical Review
Letters 102, 040501 (2009)

€ 

X

64x64 matrix. Obtained after inverting a
4096x4096 linear system formed with all the
probabilities measured after perfirnubg 4096
experiments (prepare each of 64 independent
states and measure each of 64 independent
transition probabilities.

Average fidelity: 0.67
Measured Chi-matrix shows the same

“fingerprint” of the ideal one (Tofoli)



HOW TO FIGHT AGAINST DECOHERENCETHIS TALK: AN ALTERNATIVE APPROACH FOR QPT

 QUANTUM AND CLASSICAL RESOURCES Poly(Log(D))

• 1) SELECT A COEFFICIENT               (OR A SET OF THEM)

• 2) DIRECTLY MEASURE THEM WITHOUT DOING FULL QUANTUM PROCESS
TOMOGRAPHY

€ 

χmn

  

€ 

Fmn Λ( ) = d Ψ Ψ Λ Em Ψ Ψ En( )∫ Ψ

Fmn Λ( ) =
1

D+1( )
Dχmn + δmn( )

Estimate Fmn Λ( )

€ 

Estimate χmn

METHOD BASED ON A PROPERTY OF THE CHI-MATRIX

MATRIX ELEMENTS ARE AVERAGED SURVIVAL PROBABILITIES OF A CHANNEL

• A simple consequence
of the following identity

€ 

d Ψ Ψ A∫ Ψ Ψ BΨ =
1

D D+1( )
Tr AB( ) +Tr A( )Tr B( )( )



HOW TO FIGHT AGAINST DECOHERENCEQPT IS HARD… (continuation)

• STANDARD QUANTUM PROCESS (NIELSEN & CHUANG)  IS
EXPONENTIALLY HARD EVEN TO ACHIEVE PARTIAL CHARACTERIZATION!!

ARE THERE OTHER METHODS? DCQP (‘DIRECT CARACTERIZATION OF A
QUANTUM PROCESS). D. Lidar and M. Mohseni, Phys. Rev. A 77, 032322 (2008)

  

• DIAGONAL MATRIX ELEMENTS            ARE SURVIVAL PROBABILITIES OF SYSTEM
PLUS ANCILLA (A VERY EXPENSIVE RESOURCE!)

€ 

χnn

€ 

χ00 =Bell ΨΛ⊗ I Ψ Bell Ψ Bell( )Ψ Bell
€ 

Ψ Bell =
1
D

j ⊗ j
j=1

D

∑

€ 

Λ

€ 

Ψ Bell

€ 

Ψ Bell

• BUT OFF DIAGONAL ELEMENTS ARE STILL EXPONENTIALLY HARD TO CALCULATE

• NEED AN EXPENSIVE RESOURCE: CLEAN ANCILLA THAT INTERACTS WITH OUR
SYSTEM



THE IMPORTANCE OF BEING SELECTIVE…

 QUESTION: How close are we approaching a “target” operation?

€ 

UT
+ρUT = χmn

(T )En ρ Em
+

nm
∑

€ 

F = d Ψ Ψ Λ UT
+ Ψ ΨUT( )∫ Ψ

€ 

UT = 0 0 ⊗ I + 1 1 ⊗ X =
1
2
I + Z( )⊗ I +

1
2
I − Z( )⊗ X

€ 

X
 Example: C-NOT (chi-matrix has only 16 non-vanishing elements)

AVERAGE FIDELITY PROVIDES A GOOD WAY TO QUANTIFY THIS

€ 

F = χmn
(T )Fnm

nm
∑

€ 

F =
1

D+1( )
D χmn

(T )χnm
nm
∑ +1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

 MORAL: DON’T NEED THE FULL MATRIX TO COMPUTE F (ONLY 16 ELEMENTS!,
INDEPENDENT OF D!!)



HOW TO FIGHT AGAINST DECOHERENCETWO PROBLEMS MAKE NEW METHOD LOOK IMPOSSIBLE!

  

€ 

Fmn Λ( ) = d Ψ Ψ Λ Em Ψ Ψ En( )∫ Ψ

Fmn Λ( ) =
1

D+1( )
Dχmn + δmn( )

PERFORMING          

IN THE LABORATORY???

€ 

d Ψ∫ IMPLEMENTING           

IN THE LABORATORY???

€ 

Em Ψ Ψ En

THIS TALK: TWO SOLUTIONS!

1) How to perform the integral over the
entire Hilbert space?

2) How to apply a non physical (non CP)
map?



HOW TO FIGHT AGAINST DECOHERENCEHOW TO INTEGRATE IN HILBERT SPACE?

• USE 2-DESIGNS!

• A SET OF STATES (S) IS A 2-DESIGN IF AND ONLY IF

€ 

d Ψ Ψ A∫ Ψ Ψ B Ψ =
1
# S( )

Φ j AΦ j Φ j BΦ j
Φ J ∈S
∑

• 2-designs are powerful tools!! USEFUL RESULTS

a) 2-DESIGNS EXIST!

b) THEY HAVE AT LEAST         STATES

c) STATES OF (D+1) MUTUALLY UNBIASED BASIS FORM A 2-DESIGN

d) EFFICIENT ALGORITHMS TO GENERATE 2-DESIGNS EXIST
€ 

D2



HOW TO FIGHT AGAINST DECOHERENCEINTERLUDE ON 2-DESIGNS

• IS THE EXISTENCE OF 2-DESIGN A SURPRISE?

• 2-DESIGNS FOR SPIN 1/2: ENABLE TO COMPUTE AVERAGES OF
PRODUCTS OF TWO EXPECTATION VALUES (integrals of functions that depend

upon TWO bras and TWO kets)€ 

dx f x( ) = dx a + bx + cx 2( )
0

1

∫ =
1
2
f x1( ) + f x2( )( )

0

1

∫

x1
2

=
1
2

±
1
12

⇒ S = x1,x2{ }→ 2 − design

€ 

d Ψ Ψ A∫ Ψ Ψ B Ψ =
1
6
↑x A↑x ↑x B↑x +

1
6
↓x A↓x ↓x B↓x

+
1
6
↑y A↑y ↑y B↑y +

1
6
↓y A↓y ↓y B↓y

+
1
6
↑z A↑z ↑z B↑z +

1
6
↓z A↓z ↓z B↓z



HOW TO FIGHT AGAINST DECOHERENCEHOW TO APPLY A NON CP MAP?
TRANSFORM IT INTO THE DIFFERENCE BETWEEN CP MAPS…

€ 

Fmn Λ( ) =
1

D D+1( )
Φ j Λ Em Φ j Φ j En( )Φ j

j
∑

OPERATOR BASI

€ 

Em

€ 

F ±
mn Λ( ) =

1
D D+1( )

Φ j Λ Em ± En( )Φ j Φ j Em ± En( )( )Φ j
j
∑

Re Fmn Λ( )( ) =
1
2
F +

mn Λ( ) + F −
mn Λ( )( )

CAN WE PREPARE
THOSE STATES?

2-DESIGN

€ 

Φ j

SPLIT THE OPERATOR BASE INTO (D+1) COMMUTING SUBSETS

(each set contains the identity and D-1 commuting operators)

€ 

EmEACH COMMUTING SET OF           OPERATORS DEFINES A BASIS

ALL SUCH (D+1) BASES ARE MUTUALLY UNBIASEDrs)



HOW TO FIGHT AGAINST DECOHERENCEHOW TO APPLY A NON CP MAP?

USE 2-DESIGN DEFINED BY THE (D+1) MUBs ASSOCIATED WITH THE SPLIT
OF THE OPERATOR BASIS

€ 

Em

€ 

Φ j → Φ b( )
k ;b =1,...,D+1; k =1,...,D

€ 

Em Φ
b( )
k ≈ Φ b( )

k'

Em ± En( )Φ b( )
k ≈ Φ b( )

k ' ± Φ b( )
k''( )

EFFICIENT PROCCEDURE FOR PREPARING SUCH STATES EXIST!



HOW TO FIGHT AGAINST DECOHERENCENEW METHOD: SELECTIVE AND EFFICIENT Q.P.T.

FIRST EFFICIENT METHOD TO DETERMINE ANY ELEMENT OF CHI MATRIX
OF A QUANTUM PROCESS

Poly(Log(D)) QUANTUM GATES REQUIRED

Poly(Log(D)) CLASSICAL POST-PROCESSING REQUIRED

NO ANCILLARY RESOURCES (CLEAN QUBITS) ARE REQUIRED

€ 

Λ

€ 

Em ± En( )Φ j

€ 

Φ j ? :
NO⇒ x = 0
YES⇒ x =1
⎧ 
⎨ 
⎩ 

€ 

Fmn
± Λ( ) =

1
M

xi
i=1

M

∑ +O 1
M

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

Φ j



 FULLY CHARACTERIZING A QUANTUM CHANNEL AFFECTING TWO QUBITS
ENCODED IN A SINGLE (HERALDED) PHOTON

PHOTONIC IMPLEMENTATION: (EXPERIMENT IN OUR
LAB IN BUENOS AIRES)

€ 

Φ j

STATE
PREPARATION

€ 

Em ± En( )Φ j

€ 

Φ j
STATE

DETECTION



PHOTONIC IMPLEMENTATION (EXPERIMENT IN OUR
LAB IN BUENOS AIRES)



FULL QUANTUM PROCESS TOMOGRAPHY

 OUR METHOD GIVES PERFECT AGREEMENT WITH STANDARD QPT (alla
NIELSEN AND CHUANG)



FULL QUANTUM PROCESS TOMOGRAPHY

IMPORTANT: EACH MATRIX ELEMENT IS ESTIMATED BY SAMPLING OVER THE 2-
DESIGN. PRECISION INCREASES WITH SAMPLE SIZE



FULL QUANTUM PROCESS TOMOGRAPHY

IMPORTANT: EACH MATRIX ELEMENT IS ESTIMATED BY SAMPLING OVER THE 2-
DESIGN. PRECISION INCREASES WITH SAMPLE SIZE



POWER OF THE METHOD: SAMPLING & PARTIAL QPT

 COMPUTE FIDELITY OF A QUANTUM GATE WITHOUT DOING FULL QUANTUM
PROCESS TOMOGRAPHY!

€ 

UT
+ρUT = χmn

(T )En ρ Em
+

nm
∑

€ 

F = d Ψ Ψ Λ UT
+ Ψ ΨUT( )∫ Ψ = χmn

(T )Fnm
nm
∑

€ 

UT = I⊗ I
χ00
(T ) =1

€ 

UT = 0 0 ⊗ Z + 1 1 ⊗ X =
1
2
I + Z( )⊗ Z +

1
2
I − Z( )⊗ X

€ 

X

€ 

Z



THE IMPORTANCE OF BEING SELECTIVE…

 QUESTION: How close are we approaching a “target” operation?

€ 

UT
+ρUT = χmn

(T )En ρ Em
+

nm
∑

€ 

F = d Ψ Ψ Λ UT
+ Ψ ΨUT( )∫ Ψ

€ 

UT = 0 0 ⊗ I + 1 1 ⊗ X =
1
2
I + Z( )⊗ I +

1
2
I − Z( )⊗ X

€ 

X
 Example: C-NOT (chi-matrix has only 16 non-vanishing elements)

AVERAGE FIDELITY PROVIDES A GOOD WAY TO QUANTIFY THIS

€ 

F = χmn
(T )Fnm

nm
∑

€ 

F =
1

D+1( )
D χmn

(T )χnm
nm
∑ +1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

 MORAL: DON’T NEED THE FULL MATRIX TO COMPUTE F (ONLY 16 ELEMENTS!,
INDEPENDENT OF D!!)



HOW TO FIGHT AGAINST DECOHERENCESUMMARY
 FULL QPT IS ALWAYS HARD. STANDARD METHODS FOR PARTIAL QPT ARE 

ALSO EXPONENTIALLY HARD

• THERE IS AN ALTERNATIVE METHOD FOR EFFICIENT AND SELECTIVE PARTIAL 
QUANTUM PROCESS TOMOGRAPHY

• IT INVOLVES ESTIMATION OF ‘SURVIVAL PROBABILITIES’ OF A SET OF STATES 
FORMING A 2-DESIGN (VERY USEFUL RESOURCE!)

• THE METHOD HAS BEEN EXPERIMENTALLY IMPLEMENTED @ BUENOS AIRES


