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Topics to be covered
• Avian influenza as a prototype of emerging vector-born

diseases (West Nile virus, Lyme diseases);
• Biological issues: spatiotemporal spread as consequences of

the interaction of host ecology and disease epidemiology;
• Mathematical challenges: seasonlity/periodicity; spatial

movement/patch models or PDEs with nonlocal nonlinearity;
physiological structure/delay;

• Relevance to surveillance (satellite tracking, GIS), to policy
and intervention (culling, environmental impact).
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The Mathematicas: Delay Differential Equations

A delay differential equation describes the evolution of a system for
which the change rate of the state depends not only the current
but also the historical state of the system: non-Newton mechanics.

In population dynamics, time lags arise naturally from
consideration of heterogeneity of individual hosts (maturation) or
environment (transition time between patches).

Example: Consider a stage structured population with two stages:
immature and mature populations with a fixed maturation time r .

• Birth rate b(M(t)) is a function of the matured/reproductive
female population size M(t);

• Death rate is δ for matured, and dI for the immature.
d

dt
M(t) = b(M(t − r))︸ ︷︷ ︸

maturation rate

e−dI r − δM(t).



Solutions: M ′(t) = b(M(t − r))e−dI r − δM(t)

• To specify a solution for t ≥ 0, one needs to specify the initial
condition M(θ) = φ(θ) for θ ∈ [−r , 0];

• Once the initial condition φ ∈ X := C ([−r , 0]; R) is given, one
can solve the equation for all t ≥ 0 (backward extension may
not exist and may not be unique—non-Newton mechanics);

• Description of the global dynamics of even a scalar delay
differential equation is difficult.



Global Dynamics: Simplicity due to Monotonicity

• M ′(t) = b(M(t − r))e−dI r − δM(t) with monotone b has
threshold dynamics: If b′(0)e−dI r < δ then every solution
converges to zero; if b′(0)e−dI r > δ, then every nontrivial
solution of the model converges to the positive equilibrium.

• The semiflow is order-preserving and the modern theory of
monotone dynamical systems can apply.



Interaction of Periodicity and Delay
It is important to incorporate seasonality: for example, birth occurs
for migratory birds only during certain seasons:

b(t,M) = p(t)b(M), p(t + T ) = p(t)

M ′(t) = b(t,M(t − r))e−dI r − δM(t).

• nontrivial initial condition may give rise to a zero solution;
global dynamics must be addressed in an appropriate setting
determined by the seasonality; threshold dynamics
(convergence to a periodic solution) holds.

• Interaction of seasonality and delay is critical for disease
control (WNV, Lyme disease, bird flu).



The Ecology and Epidemiology in the context H5N1

• Influenza viruses are isolated from a wide range of hosts.
Types (A, B, C) are based on antigenic differences of gene
products.

• Avian influenza, an infectious disease of birds, was identified
first in Italy (E. Perroncito, 1878) (caused by type A strain).

• Avian influenza viruses are (based on pathogenicity)
categorized into two distinct groups: Highly Pathogenic Avian
Influenza (HPAI) and LPAI.

• Avian origin-H5N1 strains was primarily isolated from a
poultry farm of Scotland, UK during 1959.

• Rapid assortment ability boosted the continuous evolution,
leading to spread to different continents since 1996-Asian
outbreak.

• The HPAI H5N1 strain poses high risk for wild and
domesticated animals, and could pose a threat to humans
(WHO,CIDRP 2009).



Transmission Cycle of H5N1

The spread of H5N1 combines interactions between local and
long-range dynamics. The local dynamics involve interactions/
cross-contamination of domesticated birds, local poultry industry,
and temporary migratory birds. The nonlocal dynamics involve
the long-range transportation of industrial material and poultry,
and the long-range bird migrations.



Migratory Route and H5N1 Global Spread

(a)

(b) Migration Route



Spatiotemporal Patterns of Migratory Birds

• Bird migration: is a major biological phenomenon with billions
of birds extending over distances from the Arctic to Antarctic
using 8 broad overlaing corridors during annual cycles.

• A typical migration process involves different phases of
biological activities and seasonality, as wintering, spring
migration, breeding, maturation and autumn migration.

• Migration routes are ”interrupted” by stopovers, which
provide the resting locations between the fights for refueling
and for recovering from climatic and physiologic stress.



Surveillance Data of Migratory Birds: Satellites Tracking

Using satellites tracking, the U.S. Geological Survey
recorded the migration path of a dozen Bar-headed
geese.

• The migratory routes follow elongated closed
curved routes.

• The birds breed in the summer in the
northern part of their path (e.g., Mongolia).

• In the fall, they initiate their southward
migration route, until reaching their wintering
grounds (e.g., India).

• In the spring, they initiate a northward
migration returning to their breeding location.

• Despite variable trajectories, the major
stopover locations are common to most
tracked flocks.



Model for Spatiotemporal Distributions of Migratory Birds

Assume that migration occurs along a one dimensional continuum
(the migration route), which could be a curve. Let Si (t) be the
number of birds in patch i .

S ′1(t) = b(S1(t), t) + α2,1d2,1(t − τ1)S2(t − τ1)

− d1,2(t)S1(t)− µ1(t)S1(t),
...

S ′i (t) = αi−1,idi−1,i (t − τi−1)Si−1(t − τi−1)− di,i+1(t)Si (t)

+ αi+1,idi+1,i (t − τi )Si+1(t − τi )− di,i−1(t)Si (t)− µi (t)Si (t),
...

S ′n(t) = αn−1,ndn−1,n(t − τn−1)Sn−1(t − τn−1)

− dn,n−1(t)Sn(t)− µn(t)Sn(t).



Well-posedness of the Model
Phase Space (Smith, JDE 1987)

Y =
n∏

i=1

C [Ii ,R]

with
C [I1,R] = C ([−τ1, 0],R);
C [I2,R] = C ([−max(τ1, τ2), 0],R);
C [I3,R] = C ([−max(τ2, τ3), 0],R);

...
C [In−1,R] = C ([−max(τn−2, τn−1), 0],R);
C [In,R] = C ([−τn−1, 0],R)

‖S‖ = max
i=1,...,n

(
max
s∈Ii
|Si (s)|

)
.

Qualitative Behaviors: Nonnegativeness, boundedness of
solutions, dispativeness and existence of global attaractors (assume
b(0, t) = 0, b(S1, t) ≥ 0 if S1 ≥ 0 and supS1≥0,t≥0 b(S1, t)) <∞).



Challenge for Studying the Global Dynamics: Seasonality
• The model generates an order-preserving periodic process.

This process however is NOT strongly order-preserving.

S ′i (t) = αi−1,idi−1,i (t − τi−1)Si−1(t − τi−1)− di,i+1(t)Si (t)

+ αi+1,idi+1,i (t − τi )Si+1(t − τi )− di,i−1(t)Si (t)− µi (t)Si (t)

Seasonal migrations



Seasonal Migration Null Space

Need to remove the subspace

M := {φ ∈ Y ;φi (0) = 0, 1 ≤ i ≤ n;
di ,i+1(θi )φi (θi ) = 0 for 1 ≤ i ≤ n − 1, θi ∈ [−τi , 0];
di ,i−1(θi )φi (θi ) = 0 for 2 ≤ i ≤ n, θi ∈ [−τi−1, 0]}.

• This, determined by the migration patterns, is a closed
subspace of Y.

• Nontrivial initial data from M will give rise to a solution
identically to zero for all future time.

• A natural phase space is Y /M.

• The model gives a periodic process in this quotient space.



Threshold Dynamics Theorem

Theorem: Suppose that λb(S1, t) < b(λS1, t) when λ ∈ (0, 1)
and S1 > 0. Then either

(i) every solution tends to zero as t →∞, or

(ii) the system has a T -periodic solution which is strictly positive
(componentwise) at all times, and this solution attracts all
solutions with initial data not in the subspace M;

(iii) conclusion (i) (resp. (ii)) holds if the spectral radius of DF (0)
is strictly less (resp. larger ) than 1, where F is the Poincare
operator which maps the initial datum to the state at time T .

Reference: S. Gourley, R. Liu, J. Wu, Spatiotemporal distributions
of migratory birds: patchy models with delay”, SIAM Journal on
Applied Dynamical Systems, 2010.



Validation (Long-term Pattern) and Initial Condition for
H5N1 Outbreak
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Figure: Simulation with satellite track data



Applications: How Disease Impacts on the Ecology

• H5N1 cases are not new, and H5N1 induced death among
animals dates to the 1990s.

• A new stain, lethal to migratory wild birds, was found to
cause massive deaths in 2005 in Central Chinas Qinghai Lake
leading to a cumulative death toll of more than 6,000 wild
birds of various species including 3,018 Bar-headed geese
representing 5%-10% of global population.

• H5N1 virus is now endemic in poultry and local birds in
several regions of the world.

• Questions: How the disease endemic and the disease
mortality impact the bird ecology? How limited resources can
be best used to mitigate the disease impact on bird species?

• L. Bourouiba, J. Wu and FAO/USGS/international avian
influenza project team, Spatial dynamics of Bar-headed geese
migration in the context of H5N1, J. R. Soc. Interface,
published online before print May 14, 2010.



Impact of Disease Induced Mortality
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Impact of Disease Induced Death: Seasonality and
Transient vs Long-term Patterns
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Figure: critical (top). However, for equal duration of residence, the
average number of birds is higher when the disease occurs during the
spring migration (P4 and P11). In the early adjustment years the
opposite is observed(bottom). This was the main hypothesis
advanced in the literature.



Disease Epidemiology: Dynamics and Spread
The interaction of migratory birds and domestic poultry must be
incorporated in order to understand the role of this interaction in
sustaining and spreading the avian Influenza: need to stratify the
migratory birds by their disease status, and need to add domestic
poultry.

Figure: A schematic illustration of the local transmission cycle



Integration: global seasonal migration and local
transmission via a meta-population



The Meta-Population Model
Migratory bird dynamics
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Disease Extinction and Persistence of the Full Model

Global Threshold Theorem: A threshold, given in terms of the
spectral radius r(TI ) of the time T -solution operator of the
linearized periodic system of delay differential equations at a
disease free equilibrium, can be theoretically derived but without a
close form in terms of the model parameters.

• The nontrivial disease free equilibrium is global asymptotically
stable once the threshold is below 1;

• If the threshold is larger than 1, then the disease is uniformly
strongly persistent in the sense that there exists some
constant η > 0, which is independent of the initial conditions,
such that, for each c = b, o,w , r ,

lim inf
t→∞

I c
m(t) ≥ η, lim inf

t→∞
I c
p (t) ≥ η.



Common Teals in Poyang Lake (China) as a Case Study

• The Common Teal is the smallest
alive dabbling duck, which feed
mainly at the surface rather than
by diving.

• Common Teals were recently
confirmed to migrate north after
wintering in the Poyang Lake area
and can be observed to travel as
far as 2,700 km from their
wintering ground.



In the absence of avian influenza

Figure: Number of susceptible migratory birds over 10 years in the
absence of avian influenza.



H5N1 spread in the absence of interaction with poultry

Figure: Number of (left) susceptible and (right) infected migratory birds
over 100 years in the absence of poultry showing disease persistence and
appearance of non-periodic oscillation of the number of migratory birds.



In the presence of both avian influenza and interaction of
poultry

Figure: (top) Number of infected poultry on endemic farmed patches and
(bottom) number of susceptible and infected migratory birds showing the
persistence of the disease and convergence to periodic solutions.



HPAI outbreak mitigated by seasonal LPAI
• LPAI strains have been reported to induce partial immunity to

HPAI in poultry and some wild birds inoculated with both
HPAI and LPAI strains.

• What is the extent to which this partial immunity observed at
the individual level can affect the outcome of the outbreaks
among migratory birds at the population level during different
seasons?

• We found a distinct mitigating effect of LPAI on the death
toll induced by HPAI strain, particularly important for
populations previously exposed to and recovered from LPAI.

• We examined the effect of the dominant mode of transmission
of an HPAI strain on the outcome of the epidemic, and found
that for a given infection peak of HPAI, indirect fecal-to-oral
transmission of HPAI can lead to a higher death toll than that
associated with direct transmission.

• The mitigating effect of LPAI can, in turn, be dependent on
the route of infection of HPAI.



Two strains: flow chart
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Model Equation

Ṡ = −εLVLS − (βAAH + βI IH + βLHALH)S/N,

ȦL = εLVLS − αLAL,

ȦH = (βAAH + βI IH + βLHALH)S/N − µAH
AH − γHAH ,

İH = γHAH − µIH IH − αH IH ,

ṘL = αLAL︸ ︷︷ ︸
recovery from LPAI

− (βAAH + βI IH + βLHALH)RL/N︸ ︷︷ ︸
2nd infection by HPAI strain

,

ṘH = αH IH︸ ︷︷ ︸
recovery from HPAI

,

ȦLH = (βAAH + βI IH + βLHALH)RL/N − αLHALH ,

Ṙ = µAH
AH + µIH IH︸ ︷︷ ︸

disease induced death

+ αLHALH︸ ︷︷ ︸
recovery from 2nd HPAI

,

V̇L = φAL
AL − νLVL.



Dynamics Analysis: Equilibria and Reproduction Numbers
Two equilibria are of significance on the time scale considered.

• A disease free equilibrium in a fully susceptible population
E0 = (S∗, 0, 0, 0, 0, 0, 0, 0, 0).

• Another corresponds to a population that has been previously
exposed to LPAI, but remains susceptible to HPAI:
E1 = (S∗, 0, 0, 0,R∗L , 0, 0, 0, 0).

• At E0, we have

R̄0H1 =
S∗/NβIγH

(γH + µAH
)(µIH + αH)

+
βAS∗/N

γH + µAH

, R̄0L1 =

√
εLS∗φAL

νLαL
,

as the reproduction numbers for the HPAI and LPAI strains.
• At E1, we have

R̄0H2 = S∗/NβIγH

(γH +µAH
)(µIH

+αH ) + βAS∗/N
(γH +µAH

) +
R∗

L /NβLH

αLH
,

R̄0L2 =
√

εLS∗φAL

νLαL
,

with similar interpretations, but for the spread of HPAI in a
population of birds naive to HPAI only.



Parameters and scenarios: multi-scales, seasonality and
migration

With fast virus dynamics in the environment, the subsystem for
LPAI strain is a standard SIR model and the final size relation
holds, so we can use the final attack rate to parametrize the
transmission rates and basic reproduction numbers of particular
seasons.

εL Smax S(∞) Amax
L R̄0L1

R1 εL1 = 7.42× 10−9 700.92 468 5% 1.19
R2 εL2 = 8.85× 10−9 587.54 308 10% 1.30
R3 εL3 = 1.19× 10−8 434.46 141 20% 1.51
R4 εL4 = 1.56× 10−8 333.72 60 30% 1.73

Table: Set of parameters for groups of simulations R1 to R4, with four
values of εL, R0L =

√
εLφAL

N/(νLαL), αL = 7.14× 10−2 day−1,
νL = 8.75× 10−1 day−1, φAL

= 2.397× 103.7 day−1, and the total
population N = 1000.



Parameters and scenarios: HPAI strain and cross-infection

• The infection parameter βIH is the product of the number of
contacts c between an infectious and susceptible bird per unit
time and p, the probability of successful infection upon such
contact. That is, βIH = c × p.

• We take a range of values for the transmission probability p of
0.03975 to 0.80. We selected four values displayed:
p1 = 0.03975, p3 = 0.0443, p5 = 0.05, and p6 = 0.1. These
lead to HPAI isolated dynamics with peak infectious
populations of about 7.44, 10.8, 15, and 53% , corresponding
to HPAI reproduction numbers of R̄0H1 ≈ 1.55, 1.7, 1.8, and
3.9, respectively.



Effect of LPAI on the onset /dynamics of HPAI
• We focus on sixteen sets of parameters: Four LPAI specific

sets of parameters (R1 to R4) correspond to a change of
seasonality faced by the birds during their migration; and the
four HPAI specific sets of parameters correspond to case
scenarios of HPAI in the range of data reported.

• The relative values of LPAI and HPAI control parameters lead
to roughly three types of configurations.

• The co-circulating LPAI and HPAI strains can lead to a
reduction of HPAI induced death at the population level. In
particular, the increase of the prevalence of LPAI with
seasonality affects more significantly the final number of dead
birds compared to its effect in reducing the final number of
HPAI recovered groups.

• The outcome of the HPAI epidemic is highly dependent on the
season in which the HPAI strain is introduced into the
population, under-detection in the wild in post-LPAI peak
season (usually in the Fall).



Three Regimes

• The first regime is that in which the HPAI strain dominates
and the increase of prevalence of LPAI from one season to the
next does not significantly influence the HPAI death toll.

• In the second regime in which R̄0H1 and R̄0L1 are almost equal
(O(10−1) & |R̄0H1− R̄0L1|), the influence of LPAI is significant
in reducing the number of birds infected by HPAI. The overall
death toll of HPAI is reduced. We note that the main
difference between cases with R̄0L1 ' R̄0H1 and R̄0L1 / R̄0H1

is the final number of LPAI recovered birds and as a result,
the final number of birds escaping both LPAI and HPAI.

• The last regime is that in which the reproduction number of
the LPAI strain is larger than that of HPAI with
R̄0L1 − R̄0H1 > O(10−1). In this regime, the LPAI dynamics is
sufficiently rapid to hinder the initiation of the epidemic of
HPAI. A considerable reduction in the number of HPAI dead
and recovered birds can be observed.



Some simulations
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On-going Bird Flu Modeling Projects

• Impact of maturation and age-structured models (Bourouiba
and Wu, 2010);

• The interface of bird ecology and disease epidemiology:
disease persistence (Bourouiba, Gourley, Liu and Wu, SIAM J.
Appl. Math.);

• Environmental contamination: direct transmission vs indirect
transmission (Bourouiba, Teslya and Wu, J. Theo. Bio.)

• The evaluation of effectiveness of intervention measures ( Liu,
Duvvuri and Wu, MMNP, 2008);

• The (local) spatial spread: traveling waves and PDE models
(Liu, Wang and Wu, in revision);

• Interaction of LPAI and HPAI (Bourouiba, Teslya and Wu,
JTB);

• Risk assessment for North American (Northern pintails
migration) (Du and Wu, in progress)



Relevance to North America

Northern Pintail (Anas acuta) 



Relevance to the Region (Ontario)
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• Prototype diseases: Avian influenza, West Nile virus, Lyme

diseases;
• Biological Issues: Spatiotemporal transmission dynamics from

the interaction of host ecology and disease epidemiology;
• Mathematical challenges: seasonlity/periodicity; spatial
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