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A single-out break influenza transmission model with
vaccination by Gerardo Chowell et al (2006, 2009)

Ṡ(t) = −u(t)S(t)− β
I(t) + J(t)

N(t)
S(t) (1)

V̇ (t) = εu(t)S(t)− ηV (t)− β
I(t) + J(t)

N(t)
V (t)

Ḟ (t) = (1− ε)u(t)S(t)− β
I(t) + J(t)

N(t)
F (t)

Ṗ(t) = ηV (t)

Ė(t) = β
I(t) + J(t)

N(t)
(S(t) + V (t) + F (t))− kE(t)

İ(t) = kE(t)− (α+ γ1)I(t)

J̇(t) = αI(t)− (γ2 + δ)J(t)

Ṙ(t) = γ1I(t) + γ2J(t)

Ḋ(t) = δJ(t)

Ẏ (t) = u(t)S(t)
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Constrained optimal control problem

The objective functional to be minimized is

F(u(t)) =

Z T

0
[I(t) +

W
2

u2(t)]dt (2)

where the control effect is modeled by a quadratic term in u(t). The weight constant W
is a measure of the relative cost of vaccination over a finite time period.
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The isoperimetric-constrained problem is to find u∗(t) such that

F(u∗(t)) = minΩF(u(t)) (3)Z T

0
u(t)S(t)dt = B (4)

where Ω = {u(t) ∈ L1(0,T )‖0 ≤ u(t) ≤ b, t ∈ [0,T ]} and subject to state systems (1).

The equality constraint (isoperimetric constraint) represents the total amount of
vaccines available B over the time interval [0,T ].

Constraint can be reformulated in terms of the differential equation Ẏ (t) = u(t)S(t)
with the initial condition Y (0) = 0 and final condition Y (T ) = B.
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Pontryagin’s Maximum Principle

H = I(t) +
W
2

u2(t) (5)

+ λ1(t){−u(t)S(t)− β
(I(t) + J(t))

N(t)
S(t)}

+ λ2(t){εu(t)S(t)− ηV (t)− β
(I(t) + J(t))

N(t)
V (t)}

+ λ3(t){(1− ε)u(t)S(t)− β
(I(t) + J(t))

N(t)
F (t)}

+ λ4(t){β
(I(t) + J(t))

N(t)
(S(t) + V (t) + F (t))− kE(t)}

+ λ5(t){kE(t)− (α+ γ1)I(t))}
+ λ6(t){αI(t)− (γ2 + δ)J(t)}
+ λ7(t){u(t)S(t)}
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Theorem
There exist an optimal control u∗(t) and corresponding state solutions, X∗(t) that
minimizes F(u) over Ω. It is necessary that there exist continuous functions λi (t) such
that

λ̇1 = −[λ1(u(t)− λ1β
(I(t) + J(t))

N(t)
+ λ2(εu(t)) (6)

+ λ3((1− ε)u(t) + λ4β
(I(t) + J(t))

N(t)
+ λ7u(t)]

λ̇2 = −[λ2 − η + λ2(−β
(I(t) + J(t))

N(t)
) + λ4β

(I(t) + J(t))

N(t)
]

λ̇3 = −[−λ3β
(I(t) + J(t))

N(t)
+ λ4β

(I(t) + J(t))

N(t)
]

λ̇4 = −[λ4(−k) + λ5k ]

λ̇5 = −[1− λ1
β

N(t)
S(t)− λ2

β

N
V (t)− λ3

β

N(t)
F (t)

+ λ4
β

N(t)
(S(t) + V (t) + F (t))− λ5(α + γ1) + λ6α]

λ̇6 = −[−λ1
β

N(t)
S(t)− λ2

β

N(t)
V (t) + λ3

β

N(t)
(F (t))

− λ4
β

N(t)
(S(t) + V (t) + F (t))− λ6(γ2 + δ)]

λ̇7 = 0

satisfying the transversality conditions, λi (T ) = 0, i = 1, · · · , 6, λ7(T ) = θ.
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Proof The existence of optimal controls is guaranteed since the integrand of J is a
convex function of U(t) and the the state system satisfies the Lipschitz property with
respect to the state variables. The following can be derived from the Pontryagin’s
Maximum Principle:

dλ1(t)
dt

= −
∂H
∂S

,
dλ2(t)

dt
= −

∂H
∂V

,
dλ3(t)

dt
= −

∂H
∂F

,

dλ4(t)
dt

= −
∂H
∂E

,
dλ5(t)

dt
= −

∂H
∂I
,

dλ6(t)
dt

= −
∂H
∂J

,
dλ7(t)

dt
= −

∂H
∂Y

,

with λi (T ) = 0 for i = 1, ..., 6, λ7(T ) = θ.
The optimality conditions:

∂H
∂u

= Wu(t)−λ1(t)S(t)+ελ2(t)S(t)+(1−ε)λ3(t)S(t)+λ7(t)S(t) = 0 at u(t) = u∗(t)

Solving for u∗(t) we obtain

u∗(t) =
S(t)
W

[λ1(t)− ελ2(t)− (1− ε)λ3(t) + λ7(t)].

By using the standard argument for bounds 0 ≤ u(t) ≤ b, we have

u∗(t) = min
˘

max
˘

0,
S(t)
W

(λ1(t)− ελ2(t)− (1− ε)λ3(t) + λ7(t))
¯
, b
¯

(7)
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Unconstrained optimal problem using the standard two point boundary method:

• State system is solved using a forward method with given initial conditions.
• Adjoint system is solved using a backward scheme with the transversality

conditions.
• Update controls using the optimality condition
• Iterate the process until a convergence criterion is satisfied

Constrained optimization problem:
Y (t) is introduced in (1) from the isoperimetric constraint (5), which requires boundary
conditions at t = 0 and t = T . Non-zero transversality condition at the final time T ,
namely that A7(T ) ≡ θ. Note that θ is unknown therefore, an iteration process is
needed to find the right transversality condition required to satisfy the isoperimetric
constraint (Y (T ) = B).
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Age-specific optimal vaccination
Adaptive Vaccination Strategies to Mitigate Pandemic Influenza: Mexico as a Case Study by Gerardo Chowell et al. (2009)

We used a mathematical model of the transmission dynamics of pandemic influenza
which accounted for age heterogeneity in disease transmissibility (R0), in addition to
age-specific rates of infection, hospitalization and death.

Our mathematical framework incorporated time-dependent vaccination rates in the
optimal control framework.

Optimal vaccination policies were computed and analyzed under different vaccination
coverage levels and the basic reproduction number (R0).
(1) which groups should be prioritized for influenza pandemic vaccination?
(2) how much vaccine should be allocated to each group and how do these vaccination
rates vary over time?
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A single-out break influenza transmission model
with age groups

Ṡi (t) = −ui (t)Si (t)−
6X

i=1

βij
(Ij (t) + Jj (t))

N(t)
Si (t) (8)

V̇i (t) = εi ui (t)Si (t)− ηVi (t)−
6X

i=1

βij
(Ij (t) + Jj (t))

N(t)
Vi (t)

Ḟi (t) = (1− εi )ui (t)Si (t)−
6X

i=1

βij
(Ij (t) + Jj (t))

N(t)
Fi (t)

Ṗi (t) = ηVi (t)

Ėi (t) =
6X

i=1

βij
(Ij (t) + Jj (t))

N(t)
(Si (t) + Vi (t) + Fi (t))− kEi (t)

İi (t) = kEi (t)− (αi + γ1)Ii (t)

J̇i (t) = αi Ii (t)− (γ2 + δi )Ji (t)

Ṙi (t) = γ1Ii (t) + γ2Ji (t)

Ḋi (t) = δi Ji (t)
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The objective functional F to be minimized is given by the expression:

F(U(t)) =

Z T

0

6X
i=1

[Ii (t) +
Wi

2
ui

2(t)]dt (9)

with U(t) = (u1(t), ..., u6(t)) and X(t) = (Si ,Vi ,Fi ,Pi ,Ei , Ii , Ji ,Ri ,Di ).

Find an optimal pair, (U∗(t),X∗(t)), such that

F(U∗(t)) = minΩF(U(t)) (10)

where Ω = {U(t) ∈ L1(0,T )6‖a ≤ U(t) ≤ b, t ∈ [0,T ]} subject to the state equations
given by (8) with initial conditions. The weight constants Wi represent the desired
balancing constants which measure the relative cost of vaccination.
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Parameter definitions and baseline values

Parameter Description Value

k Rate of progression from latent to infectious (days−1) 1/1.9
γ1 Recovery rate (days−1) for infectious class (days−1) 1/1.5
γ2 Recovery rate for hospitalized class (days−1) 1/1.5
η Rate of progression from vaccinated to protected (days−1) 1/10
αi Age-specific diagnostic rate (days−1) 0.12− 0.7
δi Age-specific mortality rate (days−1) 0.03− 0.14
εi Age-specific efficacy of vaccinations 0.3− 0.8
Ii (0) The initial values (i=2,3) 1, 5
T The simulated duration (days) 300
b The upper bound of control (vaccination rates, days−1) 0.02
Wi Weight constants on controls 109 − 1015
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Age-dependent parameters (calibrated for the 2009 A (H1N1) outbreak in Mexico) are
shown(1 = 0− 5y, 2 = 6− 12y, 3 = 13− 19y, 4 = 20− 39y , 5 = 40− 59y, 6 => 60y).
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The age-specific contact rate matrix cij between age groups i and j is illustrated in the bottom panel. The contact
rate among the 6-12 y age group is the highest while it is lowest among seniors (> 60y ).
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A	   B	   C	  

D	   E	   F	  

Age-specific incidence curves of clinical cases, hospitalizations and deaths are displayed whenR0=1.8.
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The time series of age-specific vaccinated proportion is shown for each age group.
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Age-specific fractions of total vaccines, cumulative proportions of vaccinated cases and reductions are illustrated in
the graph A, B, C, whenR0=1.8.
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W=1012

W=1015

The impact of weight constants on age-specific incidence of infected and vaccinated are explored whenR0=1.8
under three different weight constants W = 109, W = 1012, and W = 1015. Age-specific vaccination controls are

compared in top six graphs (A-F).
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The corresponding age-specific incidence curves of clinical cases are illustrated in the middle three graphs (G-I).
Age-specific vaccinated proportions are displayed in the bottom three graphs (J-L). Total vaccine coverages are

77%, 67% and 30% for W = 109, W = 1012, and W = 1015, respectively.
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Age-specific incidence curves of clinical cases are plotted under three differentR0s: R0 = 1.8,R0 = 2.4, and
R0 = 3.0 (A-C). Total vaccination coverages are 30%, 26% and 21% forR0 = 1.8,R0 = 2.4,R0 = 3.0,

respectively.
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Cumulative proportions of vaccinated (R0=1.8 A, 1:VC = 77%, 2:VC = 67%, 3:VC = 30%). B: 1:R0 = 1.8,
2:R0 = 2.4, 3:R0 = 3.0).
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Summary

• Monotonic decreasing vaccination rates (the highest rate at the beginning) are
optimal for all R0.

• The total vaccination coverage of 70 %: The school age group (6-12y) is the
main target.

• The total vaccination coverage of 30 %: The maximum vaccination coverage is
allocated in the age group in the 20-39 y .

• Our analysis demonstrate that high contact rates (6-12y ) and the high population
density (20-39y ) contributed the most to the overall transmissibility of influenza.

• Overall, the optimal vaccination strategy provide relatively high reductions of 36,
37 and 38 %, respectively, in the number of infected, hospitalized and dead,
respectively, when R0 = 1.8 and vaccination coverage of 30%.
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