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“A picture is worth 1000 words.” %%‘E:sg;
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1.1. Implications of phenomenological heterogeneity

At the very beginning. as an infectious individual seeded
in an infinitely large susceptible population ... ...
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Let random variable: 6‘{5, A S :ﬁﬂg_ﬂ
f tH
i = # of infections produced during ones entire infectious period o
The probability: Pri& =}, 1=0.1,...; the mean (weighted average): E[¥]= > jPr{¥ = j}
J=0

The follow plots correspond to 4 probability distributions, all with mean =3

A distribution very dilated (highly skewed)

A distribution more dilated than the geometric distribution

_ Geometric distribution
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more “concentrated” around the mean

1011 12 13 14 16 16 17 18 10 I0

i=0,1, ... number of the secondary transmizsions

* Heterogeneous: afew infect many; many infect a few
0 the probability of producing zaro transmission Is higher (skewed);
0 the probability of producing very large mumber of transmissions is also higher ;
o maore likely to take “extreme” values

Heterogeneity is a relative term to homogeneity.

The ODE models for SIR and SEIR and the corresponding stochastic compartment
models with Markov property generate the geometrically distributed infectious contacts,
and those models are often attached with the word “homogeneity”.

Therefore, we use the geometric distribution as a benchmark. In the plots, the geometric
distribution is illustrated as a line. All the distributions have the same mean value.

If more heterogeneous than the geometric distribution, the probability of N=0 is higher
and the probability of N taking large values is also higher (see the magnified image).
Hence, the more likely it takes extreme values.

On the other hand, when more homogeneous than the geometric distribution, the
distribution is more concentrated around the mean. The Poisson distribution is one of
such examples.
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A distribution very dilated (highly skewed) 5&3 ;oh 55{'3@
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— | distribution more dilated than the geometric distribution
™ s0% ’_,.’
é - _ Geometric distribution 160
(i) ::: Most individuals produce very
A /" Poisson distribution: 100 fews transmissions.
2 more “concentrated” around the mean 80 .
" A few individuals produce
1 & many transmissions.
20
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j=0,1, ...: number of the secondary transmizssions

Heferogeneous: refafive fo homogeneous

Verbal description:
'the more heterogensous, the more likely it takes "sxtreme” values "
Many different aspects of heterogeneity may produce the same phenomenon;

Could be due to: large variation of the infectious period among infected individuals even
wihen the environment s "homogensous”;

Could be due to: highly heterogeneous environment in which the transmission ocours
even If little variation of individuals' infectious periods.

The two “could be due to” aspects will be Part 2 of this presentation.
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1. Phenomenological observation

T _A distribution very dilated (highly skewed)
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j=0,1, ... number of the secondary transmissions

Heferogeneous: relafive to homogeneous
Mathematical transfation: convex ordering of fwo random variables
Xy 15 smaller than X5 in convex order, denoted as ¥, = X,
if E[®(x)]= E®(x,)] for all convex function @(x).

Convex flinctions are finciions that fake on their relatively large values over the regions of the form
(—eo, @) (b0} fora < b
The geometric distribution is implied in QDE and Markoy SIENR models, associated with

"homogeneity " Hence, we may use the geometric distribution as a benchmark, according to
convex order, for "heterogeneity”.

For more on convex order, Irecommend
Shaked, M and Shanthikumar, J.G (2007) Stochastic Orders. Springer.
It is the mathematical language for the verbal description:

“The more heterogeneous, the more likely it takes “extreme” values.”
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1.1. Implications of phenomenological heterogeneity

Questions and answers regarding: “as an infectious individual seeded in an infinitely
large susceptible population”, at the very beginning of an epidemic.

Characterize a small outbreak versus a large outbreak
{along the line of Kendall 1956)

Let Cfe) be the cumulative number of infected individuals as ¢ — e, random, with mean E[C{e0)]

sometimes, a small outbreak. a handful cases followed by extinction

The expected number of infected individuals by the end of the E[C{eo)]

T ; ) ] o — 0, asn —o0
outbreak is finite even if the population size can be infinitely large: s

other times, a jarge outbreak:

The expected cumulative number of infected individuals B[ Ceoy]
scales linearly with the size of the susceptible population a2

— >0 asn —w

Cfao) follows a bi-model distribution

(shown by simulation) SOTEHTES ather times
From Anderson and Watson (1980): ’f
simulation based on n=100 individuals. P
Bi-modal distribution with one mode at Siza
zero, and another mode around 0.8. a 0 P ) ) 100

The original Kendall paper is hard to find. It is

Kendall, D. (1956) Deterministic and stochastic epidemics in closed populations. Proc.
Fifth Berkeley Symp. Math. Statist. Probab. 4. University of California Press 149-165.

Alternatively, in Diekmann and Heesterbeek (2000), the authors provide the same
description.

Diekmann, O. and Heesterbeek, J.A.P. (2000). Mathematical Epidemiology of Infectious
Diseases: Model Building, Analysis and Interpretation. Wiley Series in Mathematical
and Computational Biology.

The simulation example is taken from

Anderson, D. and Watson, R. (1980) On the spread of a disease with gamma distributed
latent and infectious periods. Biometrika, 67, 1, 191-198.



PUBLIC HEALTH AGENCY of CANADA | AGENCE DE SANTE PUBLIQUE du CANADA

1.1. Implications of phenomenological heterogeneity

Questions and answers regarding. “as an infectious individual seeded in an infinitely
large susceptible population”, at the very beginning of an epidemic.

A. Whatis the risk of a large outbreak?  Denote this probability as 1—m

N =# of infections produced during ones entire infectious period. . ";f, » %Pi
A g oh
Fr{N=j} j=0,1,.. uniquely determined by prob. generating function ;;553 “}":” FI
Sy 6%}1 o 1;:’%'39
= . A L b ¥
Guls)= > 8" Pr{l = j}= Els™¥], s»0 "'a:'} }1” S ;it:?g
J=0
The basic reproduction number : .
v R, = A[N]= Gy(D) If K =1, then s =1, with certainty.
199 A Zero risk of large outhreak.
o o P If B, >1, thenx <1.
A a o 'l — —
ta g ¢ |G =PBr{ =0}, The risk of large outbreak = 1-m .
_5:\ 05 - i : GN(D =1
z ! — ¢ .
G ol . i) =0, Gl =0 With protb. m,

Vd Ry=3 the final size is
this distribution.

/

0 0 04 ] 0% mn Sie

oY
Froquancy

o 0 Ll

m is the smallest root of the equation G,(s)=+¢

The probability generating function (p.g.f.) is a very powerful tool to study non-negative
integer values discrete random variable. The probabilities can be uniquely defined
through the p.g.f.

The use of p.g.f. to study the extinction probability (i.e. the risk a small outbreak) can be
found in every textbook on branching processes.

Relating it explicitly to the risk of a small outbreak, as well as the expression of R0 as
the slope of the p.g.f. evaluated at s=1, along with all the strictly convex property of the
p.g.f., can be found in Diekmann and Heesterbeek (2000).
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1.1. Implications of phenomenological heterogeneity
B. What does heterogeneily do to the risk of a large ontbreak 1-n?

Convexordening. x, < X, if E[(X)]<E®X,)] for all convex function O(x).

—ex

Variance by definition: var[ X]= E[(X — )*], where u = E[X]

(x— ) is a convex function of x

Prob. generating function: G,(=)=E[s*], s€[0,1]

& is aconvex function of x

Lo- Given the same Ry

Heterogeneity with respect to the random wvariable

S g
27, inthe sense that, {; Gy <1
“the mare heterageneois, the mare Likely it takes .
‘extreme  values 7 o 08
&
then the more heterogeneous: 0.4
+ the larger is the variance var[M],
+ the largeris the value G, (s) forall s<[0,1] 02
+ the largeris the probability, «, of a small
outbreak, as the smallest root of G (s)=¢ - y A y y

Heterogeneity is described by convex ordering.
Larger in convex order gives larger variance, which is a more intuitive measure.
Larger in convex order gives ordering of the probability generating functions.

Later in the presentation, we shall see a correspondence between the p.g.f. and the
Laplace transform function of the infectious period.
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1.1. Implications of phenomenological heterogeneity

C. If a small outbreak, how many generations if tukes fo become extinct and
what does heterogeneily affect if?

Tg =1.2,... =number of generations to extinction as a discrete random variable
The cumL. prob. can be calculated recursively Pr{T, < g} = GGy (---Gyy(0)--9))

The following are exercises in textbooks.

n tirmes I
I, Fora suitable positive constant A4, 107 wis)
- Pr(T, =g}~ AGy(m)* ] o PH{T, < g} = 7
i Itis always true G Gm <1 e
1o
] «Pt{Ty =2} = GiGy{0N)
i { ; |
A B ¢S P3|
L] L PyiTg = 1} = Gi0)
& " ]
mz n:j T
[ -
1 0.25-
0z -
01 02 04 T 06 0z 1o :
¥ T i ] =
DD:lrr[|||||||11]rrr||s
Heterogeneity not only increases the prob. of a o S N{%? e UL
small outhreak, but also malkes it to become G T 0

extinct quickly with fewer generations.

This slide is based on Ch. 10 (Yan, P. ) of Springer Lecture Notes (Ed. Brauer, van den
Driessche and Wu).

Note that if Ro> 1, lim_, Pr{T, < g} <1, which defines a sub-distribution, rather than a
proper distribution function.

The graph showing lim  Pr{T, < g} =7 is the line of thinking that leads to the proof
that « is the smallest root of the fixed-point-equation G, (S) =S .
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1.1. Implications of phenomenological heterogeneity
D. If a smail outbreak, what is the distribution of its final size?

Cfw) = 1,2, . i5 adiscrete random variable.

The distribution of Cfe) =1, 2, .. can be also precisely calculated using a recursive

formula based on G,(s), § =0
Gty (s)= SGN(GC(m) (s))

where GQWJ(S) stands for the prob. generating function of Cfe), which can be used to calculate
[Pr{C(e0) = j},j=1.2,...]
The mean and variance of the final size: Given the same E?;I[N]: GEw +R - R

Evaluate Gy,(m) and Gy () 7

! S g

EIC() |smal ovthreak] = -— 2

A

G () + Gl ) = G () ‘;;‘ 05

war[C(eo) | small outhreal] = =X . J\?r - i &
{1- Gyl & ]

¥R, 7=1,GM=R:
E[C(ea)] = — var[C{eo)] = war[ ] .
1-& (1-R,F

Heterogeneity — large var[V], hard-to-predict final size

This slide is also based on Ch. 10 (Yan, P. ) of Springer Lecture Notes (Ed. Brauer, van
den Driessche and Wu).

The case RO<I leads to large variance.

In the case R0O>1, G|, (7)replaces RO, and Gy (7) replacesGy (1). Hence

Gl (r)+G} (7)-G} (x)* replaces var[N]. Some theory that leads to the statement of
large variance of the final size needs to be fixed.
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2. Heterogeneity in the agent-host-environment

interface
« Conceptual assumptions vs. tactical assumptions

2.1. Heterogeneity in tactical assumptions, implications on dynamics
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2. Heterogeneity in agent-host-environment interface
» Tactical assumptions vs conceptual assumptions

Exam p|e of tact | c al assum pt | ons Infe ".t'.louz'.r.ﬁ.-:':' may vary in stages
or er.‘JII ated by ||'.t—|:-|'ve|m-3:1
. . . . . . L ] L
within an infected individuals T wentperiod ] infectiuwsperiod ]
moment at able to infect others no longer infectious
infection (recovered, 1solated, ete)

1. Is there a latent period? If yes, how long on average? How variable?
2. Besides the average infectious period it; , how variable is it distributed?

Example of conceptual assumptions: environment, population, among indivicials, . .

)
1. The force of infection onto « susceptible individual © %

: %0 infectious individuals

— 05

nit
2.  The instantaneous rate of passing the infection from « fypical infections individual
ST
to another &> 2 : % of susceptible individuals — 20

One of the (hidden) conceptual assumptions about homogeneity; £ = & (ilinearity)

The tactical assumptions are made with an infected individuals, otherwise known as the
“natural history”. The conceptual assumptions are made about how individuals interact.
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2. Heterogeneity in agent-host-environment interface

Variability of random variables for durations X
(Tactical assumptions) et ] _wissonpoes ]

morment ot able to infect cthers 1= Ion;*:rnlf-x‘llw;s
infection (recoverad, isolated, e}

+  Some models: the latent and the infectious periods are constants (variance = 0).
»  ODE or Markov SEIR models: both periods are exponentially distributed (variance = mean?).

‘ Plots of probahility density functions with mean =gt

du
Distributions with the same mean
but more homogeneous than exponential

Exponential distribution 00la™ |
‘ | tmean = w, vatance = w’ |
247 - I \

1 - Distributions with the same mean

i
I . but more heterogeneous than exponential —_—
t\‘_\- : ?Q ié S5 L T Ba L 10 5
H

T T T 1

20 3u 4 u Su

Heferogeneous: relative fo homogeneoils

The exponantial distribution is implied in ODE or Markowvian S(ENR modeals.
We Use the exponential distribution as a benchmark, according to convex order for heterogeneity.

These are continuous time distributions, used to describe time, which is a non-negative
continuous random variable. For continuous distributions, the probabilities are described
by probability density functions.

In Part 1, we have seen plots of probabilities, used to describe the distribution of a
discrete random variable N.

The exponential distribution presented here share many similar properties of the
geometric distribution for discrete random variables.

We shall see more similarities in the next slide.
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2. Heterogeneity in agent-host-environment interface
+ Large variance of infectious period leads to heterogeneous phenomenon:

t?e s
°F.ff

?x‘»:? 19; e 2y

L Iaftent pervod

mrormeent o

%ﬁ‘h

- =¥
e =% o
E 5\15 o

no lenger infectious

abile to imfedt cthers L =
infaction (recoversd, isolated, de.) ¥ a‘bl e T 53,,

W c"\,l‘b

Assuming homogeneity in the environment, population and contacts, the shape of the {discrete)
distribution of the secondary fransmissions (by a typical infectious individual) resembles the
orobabiiity density function of the infectious perfod. (Lynch,J., Scan J Stai. 1988).

Probability density of the infectious period Probability function of N: Fr{d=j}i, 1=0,1

o o eI
[ -~ A distribution: very heterogeneous
Distributions with the same mean o ik
B .~ butmore homogeneous than exponential A distribution: quite heterogeneous
# - b i
r s
E ntial distributi P
¥ponential distr a on o L 4 Geometric distribution: the benchinark
2 Mmean = i varlance= i P = z
.~ wariance = mean+mean
1 # X v
M d E'L:“'- with the o UL 1] T Fon Poisson distribution: more
{lx . R e Rt tan e monc ntial homogeneous than geometric
- ¥ pa- - 1 watiance = mean
£ 2u 3u A Su w

01 2 3 « 5 6 7 8 5 011 12 13 1+ 15 16 17 18 18 @

var[V] = R, + & var[infectious period]

The shapes of the probability density functions of the infectious period (as a continuous
random variable) correspond to similar shapes of the probability mass functions for the
discrete random number N (such that RO = E[N]). There is a probability theory for this,
but beyond the scope of this presentation. For reference,

Lynch, J. (1988) Mixtures, generalized convexity and balayages. Scandinavian Journal
of Statistics. 15, 203-210.

The geometric distribution for N corresponds to the exponential distribution for the
infectious period.
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2. Heterogeneity in agent-host-environment interface
» Large variance of infectious period leads to heterogeneous phenomenon:

Infe ages 17s (334
b " . n 1a >
g PPt g A
f_ Meetpeicd | infectiouspemiod | —_— tAzd ul ke e
= el e
marent s abile bo anfeet cthers ST Qeyent ¢ »av
infaction, (recomersd, isolated, ete) A% et 4 ¥
B N, i
LI N4y

+  Butifthe infectious period is constant, environmental factors (e g social network) can
produce infectious contacts that lead to exactly the same phenomenon (same distribution).

Regarding small outbreaks when an infectious individual is seeded at the beginning,
it is the phenomenon itself that leads to: the more heferogeneous,

¥ the smalleris the risk of a large outbrealk;
¥ the smaller is the mean final size of a small outbreak with larger variance;
¥ the smaller is generation-to-extinction in stochastic order for a small outbreak,

Regarding large outbreaks, their dynamics over time (e.g. growth, peak, duration),
their final outcomes, and effectiveness of control measures to mitigate the
outcomes, different aspects of heterogeneity at tactical level and conceptual level,
have different impacts.
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2. 1. Heterogeneity of latent/infectious periods and implications

Laplace transform of a non-negative rv.. | ()= E[e™¥]= fe'”dFX(x), s > 0| (always exits)

Len®and L. o (5) arethe Laplace transforms for the latent and the infectious periods.

The beginning: "an infectious individual is
seeded in a large susceptible population”

The early phase. "depletion of 51t is neglioihie

. G _
m is the smallest root of Giy(s)=s / and the infected nuwmber (s vary small’
With prob. 1—m, alarge outbreak

Exponential growth, L /'
_ /
Under suitable conceptual SOIO Malthusian number o ) / /
assumptions about homogeneity © it = ﬁT . " Ll »
H
The distribution of & determined by the
infectious period distribution G, (s) = Ly (80 -5)) On the other hand, if SIR, o satisfies
= Lieiow (B -7)) =7 ﬁMﬂ and is unique
V=L (A= 7)) _° / i g
—_ g Mf;!zalu ) =] =— |l-m= E Yan (J of Theoretical Biology, 2008)
-

Initial growth rate in a “realized” large outbreak vs. the risk of a large outbreak in a repeated “experiment”.

The correspondence between the p.g.f. and the Laplace transform function of the
infectious period is given here. This correspondence is only true under “suitable
conceptual assumptions of homogeneity”” which will be discussed in detail later. This
correspondence implies that the distribution of N, the risk of a large outbreak, as well as
RO , do not depend on whether there is a latent period.

On the right side of the slide, the formula is a special case of a more general formula that
depends on the latent period as well. It is found in

Yan, P. (2008) Separate roles of the latent and infectious periods in shaping the relation
between the basic reproduction number and the intrinsic growth rate of infectious disease
outbreaks. Journal of Theoretical Biology 251, 238-252.

The key result in the slide only works if the underlying model is SIR. The implication is
that one can use the observed initial growth rate in a large outbreak to assess the risk of a
large outbreak in a similar community, under similar initial conditions (regarding each
outbreak as a “random experiment” by nature).

It also implies to “patch models” with an “infected patch” defined as the one with
observed large outbreak. Movement of individuals to a susceptible patch do not
necessarily result in another infected patch, but with a probability of it. This probability
can be modelled, if both “beta” and “rho” are estimated.
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2. 1. Heterogeneity of latent/infectious periods and implications

L@ and L. . (3) arethe Lanlace transforms for the latent and the infectious periods.
S
ey

Regarding the initial growth.: Special case of the Euler-Lotkg equation _[: e ¥ B(x)A(x)dx =1

Under suitable conceptual assumptions about homogeneity it = 8

[Statemend] |t SEIR. p satisfies | g1, (o) - e (P) 4| Yan (7 of Theorencal Fiology, 2108)
2

. ) 1 at f
0 s separately ranked according to Laplace transform orders uj oC e /

/
of the latent and the infectious periods.

] [ a )

Regarding the controfled reproduction number:  Yan and Feng (Mathematical Biosciences, 2010)
Lirmit to measures on infected, nof suscentible, indivwiduals

[Stafement] assuming both actions are "perfect’ s q;;}.'.;!"«."iy’.é’u!:"::lﬁ;Z"_',_'j':“gj-;;';:';l’;n"@
(100% effective) A T,
1= Lypsions ()
B )= Bl 22 D) 5
H. i5 separately ranked according to Laplace transform orders
of the latent and the infectious periods. (quite unlike Ry)

The general formula on the initial growth is from

Yan, P. (2008) Separate roles of the latent and infectious periods in shaping the relation
between the basic reproduction number and the intrinsic growth rate of infectious disease
outbreaks. Journal of Theoretical Biology 251, 238-252.

The formula on the controlled reproduction number is from
Yan, P. and Feng, Z. (2010) Variability order of the latent and the infectious periods in a

deterministic SEIR epidemic model and evaluation of control effectiveness.
Mathematical Biosciences 224, 43-52.
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2. 1. Heterogeneity of latent/infectious periods and implications

o is separately ranked wirt. Laplace transforms of the latent and the infectious periods.
. is separately ranked wrt. Laplace transforms of the latent and the infectious periods,

Recall: Heterogeneity

“the more heterogeneous, the more likely it takes “extreme” values.”

Convex order: X =, X, if E[D)]€E[D(X,)] for all convex function ©(x).

Dilation order of two non-negative r.v.’s with mean values ., 4,

X, is smaller than % in dilation order, denoted as X, =, %,
if B[D(X, - )] B[®(X, - )] for all convex function O(x).

If comparing two non-negative r.v.'s with equal mean s = 4 = i,

N X = X4

A=, X = Ly (s)= E[e_ﬂi] = E[‘f'_ﬂ2 I= Ly, (s)
U

var[X,] = (X, - )] < F{(X, - )] = var[X, ]

Heterogeneity (by convex order) ranks Laplace transforms and variances.

There are two excellent textbooks about different kinds of variability orders. The results
displayed here are only a small part of a broader theory, that are directly related to the
current subject.

Marshall, A.W. and Olkin, I. (2007) Life Distributions, Structure of Nonparametric,
Semiparametric and Parametric Families. Springer.

Shaked, M and Shanthikumar, J.G (2007) Stochastic Orders. Springer.
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2. 1. Heterogeneity of latent/infectious periods and implications
Homogeneity / heterogeneity of the fatent period and implications

Of latent periods of equal mean values, homogeneous: good; heterogeneous: bad.
Regarding the initial growth. Regarding the controfled reproduction number:
T
Bl (QJM=1 Rg(Wﬁ):ﬁLmﬂx(W)%w-
RU_
(s)

fior- %Lm (O~ L]
A3

a
% of latent individuals who escape from

Given 8 and the infectious period distribution, being removed (under constant rate )

the more homageneons the latent period (smallar and becoms infectious

in conrvax order), The smalierthe £, (w) , the larger
»  thesmalleris L, (o), is the prob. of latent individuals being
s the smaller isthe initial growth rate o; removed; the zasier it is to use A. to
s the sloweris the growth. control the epidemic.

This is a synthesis among the two papers:

Yan, P. (2008) Separate roles of the latent and infectious periods in shaping the relation
between the basic reproduction number and the intrinsic growth rate of infectious disease
outbreaks. Journal of Theoretical Biology 251, 238-252.

Yan, P. and Feng, Z. (2010) Variability order of the latent and the infectious periods in a

deterministic SEIR epidemic model and evaluation of control effectiveness.
Mathematical Biosciences 224, 43-52.

and theories from

Marshall, A.W. and Olkin, I. (2007) Life Distributions, Structure of Nonparametric,
Semiparametric and Parametric Families. Springer.

Shaked, M and Shanthikumar, J.G (2007) Stochastic Orders. Springer.
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2. 1. Heterogeneity of latent/infectious periods and implications
Homogeneity f heterogeneity of the infectious period and implications

Of infectious periods of equal mean values, homogeneous: bad; heterogeneous: good.

Regarding the initial growth: Regarding the controlled reproduction number:
1= L.
AL e (o) 20 (B _ Ry ¢) = ﬁﬁm,,(w)%@_
Rﬂ_
(s¥

£ %LM, (O~ L]
7

a

Given 8 and the latent period distribution, the average duration in the |-class before

*  the more homogeneous the infactious period, recovery or removal by control measure
1= L (0 (under constant rate & ).
smaller Lz, . (2) = larger — Timmm MRS

2 J The smalier the Ljg...(9) , the longer
the larger is the initial growth rate p; is the average infectiousness duration;
o the faster is the growth. the harder to uge B. to control.

Ditto: This is a synthesis among the two papers:

Yan, P. (2008) Separate roles of the latent and infectious periods in shaping the relation
between the basic reproduction number and the intrinsic growth rate of infectious disease
outbreaks. Journal of Theoretical Biology 251, 238-252.

Yan, P. and Feng, Z. (2010) Variability order of the latent and the infectious periods in a
deterministic SEIR epidemic model and evaluation of control effectiveness.
Mathematical Biosciences 224, 43-52.

and theories from

Marshall, A.W. and Olkin, I. (2007) Life Distributions, Structure of Nonparametric,
Semiparametric and Parametric Families. Springer.

Shaked, M and Shanthikumar, J.G (2007) Stochastic Orders. Springer.
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2. 1. Heterogeneity of latent/infectious periods and implications

Sawme further implications
nder suitable conceptual assumptions about homogeneity so that i) = {8%
i
Regarding the initial growth: Regarding the controfied reproduction number:
1_"?——‘ erkions I_L oo
B s () Lt (2D _ R = Bl &) WT@
100

T3

0 I

If one can set control objectives =, and = @ in order to achieve & (@ =<1,

then one can successiully prevent a large outbrealk from taking place.
Ideally, itis achievableif & = {eﬁc = £, assuming both actions are "perfect’ (100% effective).
Lessons can be learned from observed initial growth rate in large outbreak that

have happened elsewhere to set control targets to prevent a large outbreak
from happening in a similar community, under similar initial conditions.

This is a synthesis between the two papers:

Yan, P. (2008) Separate roles of the latent and infectious periods in shaping the relation
between the basic reproduction number and the intrinsic growth rate of infectious disease
outbreaks. Journal of Theoretical Biology 251, 238-252.

Yan, P. and Feng, Z. (2010) Variability order of the latent and the infectious periods in a
deterministic SEIR epidemic model and evaluation of control effectiveness.
Mathematical Biosciences 224, 43-52.

Clearly, if “psi” and “phi” both take the value “rho”, then Rc = 1.

In other words, control measures are race against time.
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2. 1. Heterogeneity of latent/infectious periods and implications
Extension jor: the controlfed reproduction number

Under suitable conceptual assumptions about homaogensity = i(f)= ﬁ%
H
. 1= Lo ()
Before. Rc(W: Q:') = /ﬁl‘mm (W)W+ _'!:.:. g '.. _: -c -Jr,ir:'_‘- an "t-.:ln-:us

assuming both actions are "perfect’ (100% effective)

Extension: “leaky situations”
1. For action B, infected individuals may be put into "leaky isalation”, with reduced
transmissibility (1—a,) 8.

2. Foraction A, latent individuals may be put into "leaky isolation”, and when they
become infectious, they have reduced transmissibility (1-a,3 8.

itati 1-L,. .
Quantitative:  R.(w.d|a,,0,) = (1= G0Ry + (0, = T E pe (09 Rey + T g (1) Wz}m(@_

Van and Feng (AMathematical Bioscigncas, 2010)

Qualitative: variability of the latent / infectious periods on control measures remains

Latent period: homogeneous good;, heterogeneous bad;
Infectious period: homogeneous bad; heterogeneous good.

For details:

Yan, P. and Feng, Z. (2010) Variability order of the latent and the infectious periods in a
deterministic SEIR epidemic model and evaluation of control effectiveness.
Mathematical Biosciences 224, 43-52.
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2. 1. Heterogeneity of latent/infectious periods and implications

Extension for:  the controlled reproduction number
Under suitable conceptual assumptions about homogeneity @ )= 8

SOOI
FED
Qualitative: variability of the latent / infectious periods on control measures remains

Latent period: homogeneous good, heterogeneous bad;
Infectious period: homogeneous bad; heterogeneous good.

Also applicable to other measures applied to individuals during their latent and
infectious periods:

1. Control measures, such as contract tracing for exposed individuals with subsequent
guarantine andfor pharmaceutical interventions { prophylaxis), work well if there is a
significantly long latent period, and not so well if the latent period is very short.

Add: Such measures work well if the latent period is a long and not very variable
(homogeneous). They may not worl well if there is large variation (heterogeneous),
even if the latent period is long on average.

2. Isolating infectious individuals andfor treating them using antiviral drugs that may reduce
transmission, work better if the natural infectious period is short.

Add:  Such measures work well if the infection period has large variation
(heterogeneous), even when the infectious period is long on average.

These are ad hoc arguments, without rigorous proof.
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2. 1. Heterogeneity of latent/infectious periods and implications

Some further implications _ )
s separately ranked according to the Laplace transform

1= L pions () ~ orders (i.e. variability) of the latent and the infectious periods.
AL e (£) — . 1:

The distributions of the latent and the infectious periods

—_—
determines the dvnamics over time.
o
However, Ry, = Ciw)
@ = B
Clo)=[ie)dt, [, 1@di=pxC@) 2= 5@ || cp)=n-s) -8
H - TERTA -
. . / \ B
* independent from the latent period; £ 7 / i =
* dependent on the infections period 3 i _g
only through its mean. E - S LK N — B
sSame Ry — same total areas How reliable is cirve-fitting models to
different paths for iff): incidence;, | data as away to estimate transmission
different paths for i) prevalence = Parameters?
Conversely, for very different Ry ,é;,é"'?";
A

different distributions for the latent and
infectious periods can produce the same
or very similar curves for 1) or ).

TIME

This is my long standing opinion about estimating key epidemic parameters such as Ry,
based on observed exponential growth rate.

There are various formulae in the literature, but each of them is crucially dependent on
the underlying (and mostly hidden) tactical assumptions about the natural history of an
infected individual.

However, | have not been able to provide a better method than those widely used in the
literature and understand the importance of estimating R at the very early stage of an
epidemic.
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Highlight

2. Heterogeneity in the agent-host-environment
interface

2.2. Heterogeneity in conceptual assumptions, implications on dynamics
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2. 2. Heterogeneity in conceptual assumptions and implications

We have emphasized: urder suitable concephual assumptions on homogeneity @ i(f) = ﬁ%
alt
o . @) =
__§ - Ste) Crt)=n - St} - % + grevalence = # individuals in a "stafe”
g= Ve 2 s, 1)
E - B , -
B o - =+ (instantaneous) incidernice
g - g - — 3 . .
g - ! i) =instantaneous infection
Fe g
' .o s cumdative incidence Clt) = £1‘(u)du.
: __________________ " L] - v

1. Distributions for the latent / infectious periods lead to different paths for ff), K, S00 and GO

2. Given the basic reproduction number Ry (the beg.inning of the epidemic), as long as
there is no intervention, the total areas under if) and f) remain unchanged.

Final size: C(m)=_[:1'(r)dr, Postpone
Total persan-time: _[: I(8)dt = p, % C (o0)
Flatten
3. Apublic health measure the
duces Ry to 5. < Ry, changes aels the Fed th
© 0 e 0 g reproduction nurmber; EEUES U3
bath the paths and the areas. Ro~R, total area

The very key discussion point from this page onwards is the transcendental relationship
between R, and the final size.

This relationship is under “the suitable conceptual assumptions on homogeneity”.

We shall tease these assumptions apart and show to what extent these assumptions can be
relaxed while the transcendental relationship is still valid.
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2. 2. Heterogeneity in conceptual assumptions and implications
S

We have emphasized: under suitable conceptual azsumptions on homogangity © i) = 8 5
nif

This assumption yields a simple expression R, = B, and a transcendental relationship
1-n = (- 5) exp(- By

—=n >0 asn —om

1O, ECE)]

M b

where £=

() WWithout intervention,

iy Cit)=n - 5
YAV Final size: Cle)= [ ie)el,

Total person-time: _L f{e)dt = ppx o)

Both are determined at the very beginning of
the epidemic given Ry

1

! It
i Pt

& & = 3 3 = 3

AN EEEE N
i
20UAPIIV] PUE ITUAEALI]

Curmilative mcidence

=
.
‘-

The final size equation when£=0
The transcendental ——
relationship
I. Ry =5: 20% reduction of Ry, 1% reduction of final size
1. Ry =3: 20% reduction of Ry, 6% reduction of final size

. Ry =1.5:20% reduction of By, 27% reduction of final size

1-n=(-sexp(-Fn)

is extremely useful

Final proportion infected (%)

Basic reproduction number R,

This shows why it is so important to estimate R at the very early stage of an epidemic.
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2. 2. Heterogeneity in conceptual assumptions and implications

Bl of Madwaotcd Bielogy (D00 o o720
DO L0 T | SRS T T

PR As we have seen: distributions of
t;vnelr:l]iu of the Final Size Formula for an Epidemic Iatent and infectious periOdS Change
ofa Newly fnvading Infectioos Discase the paths, but not the final outcomes
Junting Ma*. Davad 1.1 Earn (the total areas)

Dt’_uﬁm Wi .'dlj'jm‘a- & & Stantrtics. MeMaseer Universive, Mamilton,

McKendrick’s formula is valid. We show that mmmmw

if there is a latent stage, anv number of distinct infectious stages and/or a stage
during which infectives are isolated (the durations of each stage can be drawn from

any integrable distribution). We also consider the possibility that the transmission

Jates of infectious individuals are arbitrarily distributed—allowing. in particular,
for the existence of supel-spreaders—and

Jrove that this potential compleXity has
no_impact on the final size formula. Finally,_we show that the final size formula
dsunchanged even for a general class of spatial contact structures, We conclude

that whanesver a new reeniratnry nathanan amaroee an actimate nf the avnectad

Ve shall discuss,

+  To which extent we can relax some  assumptions on hamaoganaity (6= ﬁ&j(ﬂ
suchthat 1-m = (1- &)exp(— R} is still valid, "

+  Towhich extent ... ... so that a transcendental relationship still exists (not this equation)
such that the beginning determines the end,

+  Towhich extent .. so that the transcendental relationship fails.

Ma, J. and Earn, D. (2006) Generality of the final size formula for an epidemic of a newly
invading infectious disease. Bulletin of Mathematical Biology. 68. 679-702.

The blue underlined texts have been discussed in previous slides.

The red underlined texts will be examined.



PUBLIC HEALTH AGENCY of CANADA | AGENCE DE SANTE PUBLIQUE du CANADA

2. 2. Heterogeneity in conceptual assumptions and implications
S8
)

About suitable conceptual assumptions on homogeneity : (6= 8

Conceptual assumptions concern

enviroRment, population, among ndivicduals, .

I(? : %% infectious individuals

1. The force of infection onto @ susceptible individual * )

I
—_— ;BES(I).

2. The instantaneous rate of passing the infection trom « typical infections individual

By
to another @2 ; 0% of susceptible individuals — #D

One of the (hidden) conceptual assumptions about homogeneity: & = £ (bilinearity)

In many deterministic models:

iS(r) = — /& SOIG + (susceptible replacement)— (non - disease related depletiomn)
it 169
. ) St+d=s-1Y51=5 _ L SEIE
In stochastic, Markov models: PI‘{[I(H@::H] 16 .;}_ g i dt

Another way to describe this conceptual assumption on homogeneity is that the numbers
of new infection contacts generated by a typical infectious individual through its
infectious period follow a Poisson process.
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2. 2. Heterogeneity in conceptual assumptions and implications

. . - , S Iy
What does homogeneity mean regarding bilinearity £— o 3
1. The force of infection onto @ suscepti ble individual: ﬁ%
. . . S(£)
2. The instantaneous rate of infecting another: & 0 Agent
Environment
Agent: same infectiousness during the study period. Host /

Host:
+ Al susceptible individuals are the same: equally susceptible.

+  Allinfectious individuals are the same: equally infectious when infectious period starts.
+  Aninfected individual remains equally infectious throughout its infectious period.

Environment (homogeneous mixing): an individual contacts with all other individuals in
the population with equal probability. In an infinitely large population, the number of
contacts made by a typical individual follows a stationary Poisson process.

b

£=4 + independent of time
= contact freq. x prob. of infection per contact - Independent of which contact pair
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2. 2. Heterogeneity in conceptual assumptions and implications

Agent same infectiousness (\JYeSENo)

Agent

Host: I Environment

All susceptible individuals are the same (ﬂJYes { MNa) -

All infectious individuals are the same (xf‘(es £ Mo =

Equally infectiousness during infectious period | \JYes i MNa)
Environment: homogeneous mixing | \JYes Mo
If all the answers are "Yes", then we have the bilingar relationship ﬁ%_

irlls

We also have the expression: E, = 8x;, where g, = average infectious period.

Ifthe population is closed with size n, without The final size distribution of a large outbreak
replacement of susceptible individuals, the Mean value 77
final size of the epidemic is meaningful;
E() . B The wvery beginning _
nm=——2 with mean 7 > 0. transcends to the very end:
P »
§ 1-7 = (1- ) exp(~R,7)
where C(=) is the cumulative number of infected f
individuals as £ —e0. Siza
a0 B0 100

Not explicitly mentioned here is that when the population size is very large (much larger
than n =100 as displayed in the simulation), the final size distribution is asymptotically
Gaussian. There is a central limit theorem to prove this.
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2. 2. Heterogeneity in conceptual assumptions and implications

Agent: same infectiousness (% Yes/ No) Staging
Host: Staged infectious period with
All susceptible individuals are the same { \fYes/ Noj different infectiousness
Allinfectious individuals are the same (\Wes I Mo) B =1k
Equal infectiousness during infectious perod (Yes / X No ) | assigned to each stage.
Environment. homogeneous mixing { v Yes / Na) - - -
What have changed:
S S8
£—=—= becomes L4+ B 08 ) ==
e (BAE++ 6, tn:))w)
wihere [;(f) represents the numbers of infectious individuals in stage y = 7, ., £

2. Rﬂ = 38#; becomes Rg = ,81)-'{51) +...(8k#§t) Mean value 7]

4 = average time of the ” stage of the infectious period | Thefinal size
distribution of a

What does not change: 1-7 = (1- &) exp(— R.7) R
- no effect to the mean final size (Ma gnd Earn, 2006)

But: - if the variation among ,83.'3 is small, the more the e
staging, the smaller is the variance for the final size . £ 2 el




Agent: same infectiousness (\f‘fes;‘No)

Host:
All susceptible individuals are the same (Yes /f X MNo)
Allinfectious individuals are the same (Yes / XMNo)
Equal infecticusness during infectious period (\JYeS {No)

Environment: homogeneous mixing ( “J Yes Mo
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2. 2. Heterogeneity in conceptual assumptions and implications

Struchired population

multiple types of susectptibles
multiple types of infectives

Theories are separately developed
in deterministic compartment
madels, and in multi-type branching
processes frameworks.

For single tvpe of susceptibles and single type of infectives:
Ry = By, where g, = average infectious period

For single tvpe of susceptibles and single type of infeciives:

For structured populations:

For structured populations: slightly complicated expression but straightforward generalization
Ry =the dominant eigen-value (spectral radius] of the second generation matrix.

Explicit final size equation: 1-7 = (1- &) exp(- B77)

Analogous relationships have been developed, although complicated.
fladwiz, 1975 Scalia-Tamba, 1986, Ball, 1986; Addy, Langini, ef al. 1991 and many others.,)

VWhat does not change: the very beginning transcends to the very end.

ﬁ/TF 0{;/;1\)__/#[

{using notations in van den
Dressche and Watmoush, 2002)

Ludwig, D. (1975) Final size distributions for epidemics. Mathematical Biosciences 23.

33-46.

Scalia-Tomba, G. Asymptotic final size distribution for some chain binomial processes.

Advances in Applied Probability. 17, (1985)477-495.

Ball, F. (1986) A unified approach to the distribution of the total size and total area under
the trajectory of infectives in epidemic models. Advances in Applied Probability 18,

289-310.

Addy, GL., Longini, IM. and Haber, M. (1991) A generalized stochastic model for the
analysis of infectious disease final size data. Biometrics 47, 961-974.
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Agent: same infectiousness (Yes/ No) Unstructured, randomness in
susecptibility, infectivity and

Host: mixing (retwark), with result:

Al susceptible individuals are the same (Yes / No ?)
Al infectious individuals are the same (Yes/ No7)
Equally infectiousness during infectious period (Yes / Mo ?)

Environment: homogengous mixing (Yes f Mo )

Previously addressed:

+  Large variance of infectious pericd alone leads to heterogeneous phenomenon.

+  Ewenifthe infectious period is constant, large variances in other factors questioned
abowve, also produce the same phenomenon.

Now we address:

+  The 'tree” represents a snapshot view of the “imfections contact process ” fterminolagy from
Digtz i905) at a given time, or at the end of an epidemic. Itis a snapshot view of the
sub-graph of the contact network, of which, infectious contacts ocour along its edges.

+ |t does not contain information on dynamic features on how the infectious contact process,
or how the underlying contact network, growing over time.

In stochastic processes terms, for a stochastic process {Y(t):t >0 }, a realization of the
process at time t, Y(t)=y(t), may be represented by the marginal probability has a mar

Pr {Y(O=y(0)}
or the conditional probability
Pr {Y(t)=y(t) | given all the past history of Y(s): s<=t}.

It is the conditional probability presentation defines the path of the stochastic process
over time.

The slide shows an analogous argument, by extending these concepts to a “stochastic
graph process”.

The snapshot view corresponds to the marginal presentation. It does not contain
information of how the graph grows dynamically, which should have been the
correspondence of the conditional representation of a stochastic process.



Agent same infectiousnsss (Nersf M)

Host:
Al susceptible individuals are the same (Yes / No7)
All infectious individuals are the same {Yes / Mo 7)
Equally infectiousness during infectious period (Yes / Mo ?)

Environment: homogeneous mixing (Yes / MNo 7)
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2. 2. Heterogeneity in conceptual assumptions and implications

Unstructured, randomnessin
susceptibility, infectivity and
mizing (retwork), with rasdt:

susceptibility and/or infectivity

The expected number of infectious contacts by a
typical individual is proportional to the length of time
during the infectious period.

Scenario A: S =Ap = contact freq.x prob. of infection per contact

A may be random due to heterogeneous mixing
p may be random due to heterogeneity among individuals

» B asa whole isnolonger a constant, but random, with large (but mostly finite) variation
o The smapshot view of the tree for infectious contacts has very large variance.

Dynamic of growth: stationary increment moment when

infcclimrﬁncﬂs starts

T I

Time lapsed since the
beginning of infectiousness

The two scenarios in the following slides may give the same snapshot views, but with
very different stochastic mechanisms on the dynamic features.
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2. 2. Heterogeneity in conceptual assumptions and implications

Agent: same infectiousness (Yes / No) Unstructured, randomness in
susceptibility, infectivity and
Host: e ; .
mixing (network), with result:
Al susceptible individuals are the same (Yes / No?) . ;
Al infectious individuals are the same (Yes/ No7) 37 q?;,o » %‘%
P-G
Equally infectiousness during infectious period (Yes / Mo ?) ??jgpf f?pp’ .a
b o T - et
e L] 5 ¥
Environment: homogeneous mixing (Yes f Mo ) 5351}‘“,;0;1,%303335&%0 *
LI 65"1065
a moment when
Scenarlo A fB f:S ?"tlﬁ’idﬁ:‘m ijzgtc:?nirgn:ig starts
Dynamic of growth: stationary increment il 1T T
The expected number of infectious contacts by e et sinced
atypical individual is proportional to the length begirming of infectiousness
of time during the infectious period. _
. , Mean value 7}
fean be modalied By @ mixed-Poisson praocess) e
Results: distribution of a
large outbreak.

R, = Bu,, where 8 is mean of §, i, is meaninfectious period

Stilltrue:  1-77 = (1- &) exp(— F77)
- but » will have larger variance. - e =
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2. 2. Heterogeneity in conceptual assumptions and implications

Agent: same infectiousness (\f\’es! Ma) Unstructured, randomness in
susceptibility, infectivity and
Host: mixing (network), with rasult:
All susceptible individuals are the same (Yes / No ?) . ;
All infectious individuals are the same (Yes / No 7} " q?.:,o » %ﬁ’e
2 F .
Equally infectiousness during infectious period (Yes / MNo ?) ?'?}:.9?:3 5?;.’9 ﬁaﬁ
| %‘.ﬁ iy e
By ne? - =
Environment; homogeneous mixing (Yes / Mo 7) :aaﬂbb“gc' i\: L bd E‘:)Pc' v
BRTTRR
»

Scenario B:  The growth of the tree or the contact network does not maintain sfationary
increment. The expected number of infectious contacts by a typical individual
is no longer proportional to the length of ime during the infectious period.

Preferential attachment © the more one attracts others, the larger the probahility of making
more new connections, the # contacts (in any time interval) follows highly skewed distributions

(Yule, Waring, power-law, efC.). ("scalfe-free” networks)
Variance: can be extremely large, often does not exist (approaches infinity) |
Mean:  as defined by mathematical expectation of the form rxdFX(x), may not exit.
0
Fyis nolonger meaningful |

Final size: Mo well established transcendental relationship between Ry {if exists) and
the mean value of the final size.

There is an ongoing debate whether preferential attachment actually happen in growing
networks. Liljeros, et al. are convinced of preferential attachment as a mechanism for
sexual networks, as "people become more attractive the more partners they get."
However, Jones and Handcock is skeptical and argues that networks with infinitely large
variances but dramatically different structures can manifest the same marginal degree
distribution, whereas these different network structures produce different epidemic
behaviour.

Liljeros, F., Edling, C.R., and Amaral, L.A.N. Sexual networks: implications for the
transmission of sexually transmitted infections. Microbes and Infection 3, (2003) 189-196.

Jones, J.H. and Handcock, M.S. An assessment of preferential attachment as a
mechanism for human sexual network information. Proceedings: Biological Sciences,
The Royal Society. 270. (2003). 1123-1128.

The debate between Scenarios A and B has a longer history . In 1919, Greenwood and
Woods put forward three hypotheses into the occurrence of accidents:

1.Pure chance, which gives rise to the Poisson process (corresponding to conceptual
assumptions on homogeneity in this presentation);



2.True contagion, i.e. initially all individuals have the same probability of incurring an
accident, but this probability is modified by each accident sustained to give rise to the
linear pure birth process (corresponding to Scenario B);

3. Apparent contagion (proness), i.e. individuals have constant but unequal probabilities
of having an accident and the resulting process being a mixed-Poisson process
(corresponding to Scenario A).

Greenwood, M. and Woods, H.M. On the incidence of industrial accidents upon
individuals with special reference to multiple accidents. Report of the Industrial Research
Board, No.4. London: His Majesty of Stationery Office. (1919).
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Future study areas

1. Combine theories of stochastic processes (point processes, counting processes,
martingals, etc. ) with random graph theory to address network models for

Preferential attachment @ the maore one attracts others, the larger the
probability of making more new connections, the # contacts (in any time
interval) follows highly skewed distributions (Yule, ¥Waring, power-law, etc ).

* much of such work may have already be published or in development;
+ leave this for more knowledgeable colleagues (Bahak Pourbohloul) to
comment.

2. Development of statistical methodology to discriminate:

+  Dueto large variance of infectious period while other
agent-host-environmental factors are homogenesous
Versus
+  Due large variances in agent-host-environmental factors 7

*  Scenario & Ais random but the growth of the tree has stationary increment
Versus

. Scenario B the growth of the tree (or network) has preferential attachment 7

It is important to develop statistical models and methods to distinguish the two scenarios,
as well as the kind of data to seek after. The identical marginal (i.e. snapshot) data may
arise from two very different stochastic mechanisms which produce quantitatively very
different epidemic behaviour.



