
 
 



 
 



 
 
Heterogeneity is a relative term to homogeneity. 
 
The ODE models for SIR and SEIR and the corresponding stochastic compartment 
models with Markov property generate the geometrically distributed infectious contacts, 
and those models are often attached with the word “homogeneity”.  
 
Therefore, we use the geometric distribution as a benchmark.  In the plots, the geometric 
distribution is illustrated as a line.  All the distributions have the same mean value. 
 
If more heterogeneous than the geometric distribution, the probability of N=0 is higher 
and the probability of N taking large values is also higher (see the magnified image).  
Hence, the more likely it takes extreme values. 
 
On the other hand, when more homogeneous than the geometric distribution,  the 
distribution is more concentrated around the mean.  The Poisson distribution is one of 
such examples. 
 
 
 



 
 
 
 
 
The two “could be due to” aspects will be Part 2 of this presentation. 



 
 
 
For more on convex order,   I recommend  
 
Shaked, M and Shanthikumar, J.G  (2007) Stochastic Orders.  Springer. 
 
It is the mathematical language for the verbal description: 
 
“The more heterogeneous,  the more likely it takes “extreme” values.”



 
 
The original Kendall paper is hard to find.  It is  
 
Kendall, D.  (1956) Deterministic and stochastic epidemics in closed populations. Proc. 
Fifth Berkeley Symp. Math. Statist. Probab. 4. University of California Press 149-165. 
 
Alternatively, in Diekmann and Heesterbeek (2000), the authors provide the same 
description.  
 
Diekmann, O. and Heesterbeek, J.A.P. (2000). Mathematical Epidemiology of Infectious 
Diseases:  Model Building, Analysis and Interpretation.  Wiley Series in Mathematical 
and Computational Biology.  
 
The simulation example is taken from  
 
Anderson, D. and Watson, R. (1980) On the spread of a disease with gamma distributed 
latent and infectious periods. Biometrika, 67, 1, 191-198. 



 
 
The probability generating function (p.g.f.) is a very powerful tool to study non-negative 
integer values discrete random variable.  The probabilities can be uniquely defined 
through the p.g.f. 
 
The use of p.g.f. to study the extinction probability (i.e. the risk a small outbreak) can be 
found in every textbook on branching processes. 
 
Relating it explicitly to the risk of a small outbreak,  as well as the expression of R0 as 
the slope of the p.g.f. evaluated at s=1,  along with all the strictly convex property of the 
p.g.f.,  can be found in Diekmann and Heesterbeek (2000).  
 
 



 
 
 
Heterogeneity is described by convex ordering. 
 
Larger in convex order gives larger variance,  which is a more intuitive measure. 
 
Larger in convex order gives ordering of the probability generating functions. 
 
Later in the presentation, we shall see a correspondence between the p.g.f. and the 
Laplace transform function of the infectious period.   



 
 
This slide is based on Ch. 10 (Yan, P. ) of Springer Lecture Notes (Ed.  Brauer, van den 
Driessche and Wu). 
 
Note that if R0 > 1, 1}Pr{lim <≤∞→ gTgg ,  which defines a sub-distribution, rather than a 
proper distribution function. 
 
The graph showing π=≤∞→ }Pr{lim gTgg  is the line of thinking that leads to the proof 
that π is the smallest root of the fixed-point-equation ssGN =)(  . 
 



 
 
This slide is also based on Ch. 10 (Yan, P. ) of Springer Lecture Notes (Ed.  Brauer, van 
den Driessche and Wu). 
 
The case R0≤1 leads to large variance. 
 
In the case R0>1, )(πNG′ replaces R0, and )(πNG ′′ replaces )1(NG ′′ .  Hence 

)(πNG ′′ + )(πNG′ - 2)(πNG′  replaces var[N].  Some theory that leads to the statement of 
large variance of the final size needs to be fixed. 



 



 
 
The tactical assumptions are made with an infected individuals,  otherwise known as the 
“natural history”.  The conceptual assumptions are made about how individuals interact. 
 



 
 
These are continuous time distributions, used to describe time, which is a non-negative 
continuous random variable.  For continuous distributions, the probabilities are described 
by probability density functions. 
 
In Part 1, we have seen plots of probabilities, used to describe the distribution of a 
discrete random variable N.  
 
The exponential distribution presented here share many similar properties of the 
geometric distribution for discrete random variables. 
 
We shall see more similarities in the next slide. 
 



 
 
The shapes of the probability density functions of the infectious period (as a continuous  
random variable) correspond to similar shapes of the probability mass functions for the 
discrete random number N  (such that R0 = E[N]).  There is a probability theory for this, 
but beyond the scope of this presentation.  For reference, 
 
Lynch, J. (1988)  Mixtures, generalized convexity and balayages. Scandinavian Journal 
of Statistics. 15,  203-210. 
 
The geometric distribution for N corresponds to the exponential distribution for the 
infectious period.  
 



 
 
 



 
 
The correspondence between the p.g.f. and the Laplace transform function of the 
infectious period is given here.  This correspondence is only true under “suitable 
conceptual assumptions of homogeneity” which will be discussed in detail later.   This 
correspondence implies that the distribution of N, the risk of a large outbreak,  as well as 
R0  ,  do not depend on whether there is a latent period. 
 
On the right side of the slide,  the formula is a special case of a more general formula that 
depends on the latent period as well.  It is found in  
 
Yan, P. (2008) Separate roles of the latent and infectious periods in shaping the relation 
between the basic reproduction number and the intrinsic growth rate of infectious disease 
outbreaks. Journal of Theoretical Biology 251, 238-252. 
 
The key result  in the slide only works if the underlying model is SIR. The implication is 
that one can use the observed initial growth rate in a large outbreak to assess the risk of a 
large outbreak in a similar community, under similar initial conditions (regarding each 
outbreak as a “random experiment” by nature).  
 
It also implies to “patch models” with an “infected patch” defined as the one with 
observed large outbreak.  Movement of individuals to a susceptible patch do not 
necessarily result in another infected patch,  but with a probability of it.  This probability 
can be modelled,  if both “beta” and “rho” are estimated.    



 
 
The general formula on the initial growth is from 
 
Yan, P. (2008) Separate roles of the latent and infectious periods in shaping the relation 
between the basic reproduction number and the intrinsic growth rate of infectious disease 
outbreaks. Journal of Theoretical Biology 251, 238-252. 
 
The formula on the controlled reproduction number is from  
 
Yan, P. and Feng, Z. (2010) Variability order of the latent and the infectious periods in a 
deterministic SEIR epidemic model and evaluation of control effectiveness. 
Mathematical Biosciences 224, 43-52. 



 
 
There are two excellent textbooks about different kinds of variability orders.  The results 
displayed here are only a small part of a broader theory, that are directly related to the 
current subject.  
 
Marshall, A.W. and Olkin, I. (2007) Life Distributions, Structure of Nonparametric, 
Semiparametric and Parametric Families. Springer. 
 
Shaked, M and Shanthikumar, J.G  (2007) Stochastic Orders.  Springer. 
 



 
 
This is a synthesis among the two papers: 
 
Yan, P. (2008) Separate roles of the latent and infectious periods in shaping the relation 
between the basic reproduction number and the intrinsic growth rate of infectious disease 
outbreaks. Journal of Theoretical Biology 251, 238-252. 
 
Yan, P. and Feng, Z. (2010) Variability order of the latent and the infectious periods in a 
deterministic SEIR epidemic model and evaluation of control effectiveness. 
Mathematical Biosciences 224, 43-52. 
 
and theories from  
 
Marshall, A.W. and Olkin, I. (2007) Life Distributions, Structure of Nonparametric, 
Semiparametric and Parametric Families. Springer. 
 
Shaked, M and Shanthikumar, J.G  (2007) Stochastic Orders.  Springer. 



 
 
Ditto: This is a synthesis among the two papers: 
 
Yan, P. (2008) Separate roles of the latent and infectious periods in shaping the relation 
between the basic reproduction number and the intrinsic growth rate of infectious disease 
outbreaks. Journal of Theoretical Biology 251, 238-252. 
 
Yan, P. and Feng, Z. (2010) Variability order of the latent and the infectious periods in a 
deterministic SEIR epidemic model and evaluation of control effectiveness. 
Mathematical Biosciences 224, 43-52. 
 
and theories from  
 
Marshall, A.W. and Olkin, I. (2007) Life Distributions, Structure of Nonparametric, 
Semiparametric and Parametric Families. Springer. 
 
Shaked, M and Shanthikumar, J.G  (2007) Stochastic Orders.  Springer. 



 
 
This is a synthesis between the two papers: 
 
Yan, P. (2008) Separate roles of the latent and infectious periods in shaping the relation 
between the basic reproduction number and the intrinsic growth rate of infectious disease 
outbreaks. Journal of Theoretical Biology 251, 238-252. 
 
Yan, P. and Feng, Z. (2010) Variability order of the latent and the infectious periods in a 
deterministic SEIR epidemic model and evaluation of control effectiveness. 
Mathematical Biosciences 224, 43-52. 
 
Clearly,  if “psi” and “phi” both take the value “rho”,  then Rc = 1.   
 
In other words,  control measures are race against time.   
 



 
 
For details: 
 
Yan, P. and Feng, Z. (2010) Variability order of the latent and the infectious periods in a 
deterministic SEIR epidemic model and evaluation of control effectiveness. 
Mathematical Biosciences 224, 43-52. 
 
 



 
 
These are ad hoc arguments,  without rigorous proof. 
 



 
 
This is my long standing opinion about estimating key epidemic parameters such as R0, 
based on observed exponential growth rate. 
 
There are various formulae in the literature, but each of them is crucially dependent on 
the underlying (and mostly hidden) tactical assumptions about the natural history of an 
infected individual. 
 
However, I have not been able to provide a better method than those widely used in the 
literature and understand the importance of estimating R0 at the very early stage of an 
epidemic. 
 



 
 
 



 
 
The very key discussion point from this page onwards is the transcendental relationship 
between R0 and the final size. 
 
This relationship is under “the suitable conceptual assumptions on homogeneity”.   
 
We shall tease these assumptions apart and show to what extent these assumptions can be 
relaxed while the transcendental relationship is still valid. 
 
 
 



 
 
This shows why it is so important to estimate R0 at the very early stage of an epidemic. 
 



 
 
Ma, J. and Earn, D. (2006) Generality of the final size formula for an epidemic of a newly 
invading infectious disease. Bulletin of Mathematical Biology. 68. 679-702. 
 
The blue underlined texts have been discussed in previous slides. 
 
The red underlined texts will be examined. 
 



 
 
Another way to describe this conceptual assumption on homogeneity is that the numbers 
of new infection contacts generated by a typical infectious individual through its 
infectious period follow a Poisson process.  
 



 
 
 



 
 
Not explicitly mentioned here is that when the population size is very large (much larger 
than n =100 as displayed in the simulation),  the final size distribution is asymptotically 
Gaussian.  There is a central limit theorem to prove this. 
 



 
 
 



 
 
Ludwig, D. (1975) Final size distributions for epidemics. Mathematical Biosciences 23. 
33-46. 
 
Scalia-Tomba, G. Asymptotic final size distribution for some chain binomial processes. 
Advances in Applied Probability. 17, (1985)477-495. 
 
Ball, F. (1986) A unified approach to the distribution of the total size and total area under 
the trajectory of infectives in epidemic models.  Advances in Applied Probability 18, 
289-310. 
 
Addy, GL., Longini, IM. and  Haber, M. (1991) A generalized stochastic model for the 
analysis of infectious disease final size data.  Biometrics 47, 961-974.  



 
 
In stochastic processes terms, for a stochastic process {Y(t):t >0 },  a realization of the 
process at time t ,  Y(t)=y(t),  may be represented by the marginal probability has a mar 
 
Pr {Y(t)=y(t)} 
 
or the conditional probability 
 
Pr {Y(t)=y(t) | given all the past history of Y(s):  s<=t - }. 
 
It is the conditional probability presentation defines the path of the stochastic process 
over time.  
 
The slide shows an analogous argument, by extending these concepts to a “stochastic 
graph process”. 
 
The snapshot view corresponds to the marginal presentation.   It does not contain 
information of how the graph grows dynamically, which should have been the 
correspondence of the conditional representation of a stochastic process.   
 



 
 
 
The two scenarios in the following slides may give the same snapshot views,  but with 
very different stochastic mechanisms on the dynamic features.  
 



 
 



 
 
There is an ongoing debate whether preferential attachment actually happen in growing 
networks. Liljeros, et al. are convinced of preferential attachment as a mechanism for 
sexual networks, as "people become more attractive the more partners they get."  
However, Jones and Handcock is skeptical and argues that networks with infinitely large 
variances but dramatically different structures can manifest the same marginal degree 
distribution, whereas these different network structures produce different epidemic 
behaviour. 
 
Liljeros, F., Edling, C.R., and Amaral, L.A.N. Sexual networks: implications for the 
transmission of sexually transmitted infections. Microbes and Infection 3, (2003) 189-196. 
 
Jones, J.H. and Handcock, M.S. An assessment of preferential attachment as a 
mechanism for human sexual network information. Proceedings: Biological Sciences, 
The Royal Society. 270. (2003). 1123-1128. 
 
The debate between Scenarios A and B has a longer history .  In 1919, Greenwood and 
Woods put forward three hypotheses into the occurrence of accidents: 
 
1.Pure chance,  which gives rise to the Poisson process (corresponding to conceptual 
assumptions on homogeneity in this presentation); 
 



2.True contagion, i.e. initially all individuals have the same probability of incurring an 
accident, but this probability is modified by each accident sustained to give rise to the 
linear pure birth process (corresponding to Scenario B); 
 
3. Apparent contagion (proness), i.e. individuals have constant but unequal probabilities 
of having an accident and the resulting process being a mixed-Poisson process 
(corresponding to Scenario A). 
 
Greenwood, M. and Woods, H.M. On the incidence of industrial accidents upon 
individuals with special reference to multiple accidents. Report of the Industrial Research 
Board, No.4. London: His Majesty of Stationery Office. (1919). 
 

 
 
 
It is important to develop statistical models and methods to distinguish the two scenarios,  
as well as the kind of data to seek after.  The identical marginal (i.e. snapshot) data may 
arise from two very different stochastic mechanisms which produce quantitatively very 
different epidemic behaviour. 
 


