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The 2009 A H1N1 is the first pandemic of the XXI century. 
 

 
In the 20th century, three pandemics were caused by the emergence of different
influenza A subtypes that were antigenically divergent from human viruses: 

1. The 1918 H1N1 (Spanish flu)( p )
2. The 1957 H2N2 (Asian flu) 
3. The 1968 H3N2 (Honh Kong flu) 

 
 

Since April 2009, the outbreak of a novel influenza A (H1N1) virus (2009 H1N1
Mexican swine flu) has spread globally and developed into a human influenza
pandemic after 40 years. 
As of February 2010 the 2009 A (H1N1) has caused at least 16,000 deaths. 
 

 
At the beginning of a flu pandemic, preexisting immunity to the hemagglutinin
(HA) of the newly emerging virus is generally low (antigenic shift), guaranteeing a
large pool of susceptible hosts for rapid spread and infection of 10 to 40% of thelarge pool of susceptible hosts for rapid spread and infection of 10 to 40% of the
population worldwide. 
After a new HA becomes fixed in circulating human viruses, it undergoes gradual
changes in its antigenic structure in a process called antigenic drift, so as to
escape recognition by the human immune system Such drift leads to loss ofescape recognition by the human immune system. Such drift leads to loss of
immunity and is associated with the frequent seasonal flu epidemics that occur
during inter-pandemic periods. 



THE ESTIMATE OF THE BASIC REPRODUCTIVE NUMBER ( )Ro
OF THE INFLUENZA A(H1N1) EPIDEMIC IN MEXICO 
     
 

 
We first consider a very simple mathematical framework which mirrors the
dynamics of influenza A(H1N1).  
Even with this oversimplified model, we will show that there is a relationship
between the basic reproductive number ( Ro ) and the exponential phase ofp ( ) p p
the epidemic. 
 

 
Let us consider a population of fixed size N  in which the densities of
susceptibles, infectious and recovered at time t  are denoted by , ,S I  and R ,

i l h h l l i i i N S I Rrespectively; then the total population size is .N S I R  
 
The model is 
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Here,   is the so-called force of infection and it is the probability that
infection is acquired from and infectious individual; then   is defined as 
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THE CONCEPT OF THE BASIC REPRODUCTION NUMBER R o  
 
A disease will be established in a population provided the total population
exceeds a certain critical number of susceptibles equal to   , this is, 
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1 Since the removal rate from the infective class is   1
t im e

 
 
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 , then

1 D    average period of infectivity  duration of the disease. 
Thus, 
 
 

     
t

NR o N , 

 
is the fraction of the population that comes into contact with an infectiveis the fraction of the population that comes into contact with an infective
individual during the period of infectiousness. 
 
 

 
The threshold value R o  is also expressed as: 
 
 
   ˆ 1R o x 



 
The available data we have is about the initial rise (approximately
exponential) of the incidence of confirmed diagnosed cases of influenza
A(H1N1). Thus in the early stages of the epidemic the number of susceptibles
is approximately equal to N , this is, S N , and equations (2) and (4) give: 
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where 1D    and it is the duration of the infectiousness. 
That is, the incidence of the infection, and thence the incidence of diagnosed
influenza cases (i. e. I ), is expressed as: 
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Similarly, in the early stages of the epidemic, if there are ( )c t  cases at time t ,
there will be ( 1) ( )R o c t  cases an interval of time D  later and therefore, 
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Integrating equation (7) gives 
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Another way of calculating Ro  is to considered the compound interest rate
of increase in the number of diagnosed cases in the initial phases in which

h i hl ti l thas we have seen is roughly exponential, then
 
 

     ln(2) (9)
dt

   

 
where dt  is the doubling time and the constant ln(2) 0 .7 .a  Thus we can
identify either from equations (6) or (8) the exponential growth rate,  , as
being related to  Ro  by 
 

     ( 1) (10)Ro
D
   

 
Therefore the initial doubling time, dt , either for infection (as revealed by
seropositivity) or for diagnosed cases of influenza A(H1N1) is approximately
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Alternatively from equation (10) we can write 
 
 
    1 (11)Ro D  



 
Estimates of Ro during the influenza A(H1N1) epidemic in 
Mexico in 2009 
 
 
 
 
 

DATE OF REPORT RATE OF GROWTH ( )  DOUBLING TIME )( dt

(days) 

Ro 

May 13 0.3249 2.15  2.29
May 28 0.3001 2.2  2.2 
June 8 0.2918 2.39 2.17
August 5 0.2651 2.64 2.06

 



 
Some estimates of Ro during the influenza A(H1N1)g ( )
epidemic in Mexico in 2009 as reported in the literature 
 
 

1.4Ro    Secretaría de Salud, INDRE, México May 6, 2009 
 

[1.4 1.6]Ro    Rambaut et al. Science 324: 1557-1561 (2009) 
 

[2.2 3.1]Ro    Boëlle et al. Eurosurveillance 14: 1- 4 (2009) 
 

2.06 0.01Ro  This work2.06 0.01Ro  This work
 



 
Exponential incidence in homogeneous and uniformly mixing
populations 
 
If a person has a total of k  contacts per day, then among these there are

/k I N  contacts with infectives, where N  is the population size and I  is the
number of infectives.  
 
Let c  be the probability that a given susceptible becomes infective in one
contact with one infective.  
 
Assume that c  is a constant for the disease under investigation. Then 1 c
is the probability that a given susceptible does not become infective in one
contact with one infective. 
 
Thus, assuming that each contact is independent of other contacts, the
probability that a given susceptible does not become infective during a day
(that is in /k I N  contacts with infectives) equals (1 ) /c k I N . ( ) ( )
 
Hence, the probability that a given susceptible becomes infective in one day
is 1 (1 ) /c k I N  , or equivalently, 1 Ie  , where l n (1 ) /k c N    .  
Thus, the transmission coefficient   is a parameter that summarizes both
population and disease spread characteristics. 
 
Now we may express the incidence as the number of susceptibles S timesNow, we may express the incidence as the number of susceptibles, S , times
the probability to become infective, i.e., 

 
 

( , ) (1 ) (1 )IG S I S e    
 
 
If d d t th ti f tibl i f ti dIf ,, Is  and G  denote the proportions of susceptibles, infectives and new
infectives, respectively, we can write equation (1 )  in the form 

 
( , ) (1 ) , ( 2 )IG Is s e    

 
where l n (1 )N k c     . 
 
Lara-Sagahón A., Khartchenko V., José M. V. Stability analysis of a delay-
difference SIS epidemiological model. Applied Mathematical Sciences. 1 (26):
1277-1298 (2007). 
 



Delay-Difference SIR Epidemiological Model
 
 

 
If we assume a constant period of infectiousness, the difference equations 
of the model are: 
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The intrinsic reproductive number, Ro , is: 
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Lara-Sagahón A., Khartchenko V., José M. V. Stability analysis of a delay-g , , y y y
difference SIS epidemiological model. Applied Mathematical Sciences. 1 (26):
1277-1298 (2007). 



A predicted epidemic cycle of the discrete SIR model of influenza
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SIMPLE MODEL FOR THE SPATIAL SPREAD OF THE INFLUENZA EPIDEMICSIMPLE MODEL FOR THE SPATIAL SPREAD OF THE INFLUENZA EPIDEMIC
 
Assumptions 
♦ The populations consists of susceptibles ( , )S x t  and infectives ( , )I x t
which interact. 
 
♦ The susceptibles and infectives have the same diffusion coefficient D . 
 
♦ The basic reproductive number is 1 /R o  . 
 
♦ We want to model the spatial spread of an epidemic wave of infectiousness
into a uniform population of susceptibles.
 
♦ We look for traveling wave solutions by setting: 
 

( , ) ( ) , ( , ) ( ) ,I x t I z S x t S z z x w t     
 
 
where w  is the wave speed. This represents a wave of constant shape
traveling in the positive x  direction. 
 
The non-dimensional model can be expressed as:p
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STOCHASTIC SYSTEM OF DELAY-DIFFERENCE EQUATIONS FOR 
A SEIRS EPIDEMIOLOGICAL MODELA SEIRS EPIDEMIOLOGICAL MODEL

Considering all the foregoing assumptions, we can now express the flow rates of
the variables X , E , Y and Z per day by the following system of delay-
difference equations: 
 

11 (1 )( (1 ) )t tttX X G G N  
       
 

                                           (1.1)1t ( )
1 (1 )( (1 ) )t tttE E G G 

                                                                      (1.2)
1 (1 )( (1 ) (1 ) )t t ttY Y G G  

     
                                                   (1.3)

1 1(1 )( (1 ) (1 ) )t tt tZ Z G G    
        

           (1 4)1 1t t                           (1.4)
t t t t tN X E Y Z    ,                                                                                    (1.5)

where, 
 '(1 exp( )) ( )G X Y t t    (1 exp( )) ( , )t t tG X Y t t       ,                                                              (1.6)
 
where   represents uncorrelated Gaussian noise.  
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Dynamics of the SEIR model. Population of susceptible ( X ) and of infectious (Y )
individuals as a function of time. The parameter values of the model are:
transmission parameter 1.91  , latent period 5   days, infectious period 8 

5days, immunity period 90  days, mortality rate 51/(365 70) 4 10     , and the
population has been conveniently normalised to 1.N 





 
The most astonishing thing about the pandemic was the completeThe  most  astonishing  thing  about  the  pandemic  was  the  complete
mystery which surrounded it. 
 
…the  pandemic  spread  rapidly,  and  no more  so,  than  people  traveled
from point to point. 
 
Soper GA (1919). The lessons of the pandemic. Science  49: 501–506. 



GOAL OF THE MODEL 
 

Th l i t d l l d l f i l d i i d tThe goal is to develop a general model for viral pandemics in order to
reproduce the geographical spread of the infection. 
In this manner we can improve our ability to predict and control epidemics-
but that may first require new sociological models that are both predictivebut that may first require new sociological models that are both predictive
and quantitative.  
The interdisciplinary approach remains vital, this time at the interface of
epidemiology, sociology, and evolutionp gy gy
 
In this model the fitting of the influenza data is just an example 
 
Thi h i diff t f th k i hi h i tiThis approach is different from other works in which an excruciating
amount of details are included. The model minimizes the number of
parameters to be fitted. The merit of the model is to point out relevant
parametersparameters. 
We made a coarse-graining typical of Statistical Mechanics. 
 
The model is given in fractions, dimensionless, and we acknowledge that
we do not have all actual data.
 



Justification of the Model 
 

We live in an ever more connected mobile and interdependent worldWe live in an ever more connected, mobile and interdependent world,
where small perturbations can have unpredictable and sometimes far-
reaching effects. The paradox is that we increasingly demand predictability.
 

fWe expect the future to be anticipated, risks assessed and solutions to be
rational. We have to be ahead of everything - including threats from
infectious diseases or bioterrorism. 
 
Sometimes an overwhelming amount of data, significantly boosted
computer power and theoretical advances - network theory and social
sciences - have endowed models with a new realism. Yet fundamental
limitations remain in how well they capture key social parameters:limitations remain in how well they capture key social parameters:
population mobility, human behavior. 
 
Faced with lethal or novel pathogens, people change their behaviour to try
to reduce their riskto reduce their risk. 
 
Global communications mean that a novel lethal disease outbreak could
trigger potentially drastic social and economic consequences across the
world within days. The opportunity for mathematical modellers is just now.
 



Map showing the population density distribution used in the calculations, the
l ti l l fitt d ll ith d ti f ti t th d tpopulation color scale was fitted well with a quadratic function to the data. 

The grid is of size 224 152 cells. 



Map of the network of airlines in Mexico. There are 55 airports.



 
SPATIAL MODEL 
Identical systems of delay-difference equations for a new SEIR
(susceptible-exposed-infectious-recovered) epidemiological model are
defined in a two dimensional grid weighted with the population density, in
which the cells are coupled with a network of air and terrestrialwhich the cells are coupled with a network of air and terrestrial
communications. 
 
Thus, the time evolution is divided into a local deterministic dynamics, as
determined by the SEIR model, and a spatial stochastic dynamics based
on the mechanisms by which the infectious disease spreads. 
 
We define a two-dimensional geographical model by considering a grid ofWe define a two-dimensional geographical model by considering a grid of
cells  , .i j In each cell one independent epidemiological model, weighted
with the population density  ,i j  is attached, then 
 

 , ( , ) ( , )[1 exp( ( , )]t t tG i j i j X i j Y i j    
 
Herein we elaborate a stochastic model of the geographical spreadHerein we elaborate a stochastic model of the geographical spread
infectious diseases using Monte Carlo simulations.  
 



 
MACRODYNAMICS 
 

Terrestrial and Aerial Communications by Monte Carloy
 

£1 Att each time step one finds the cells in which ( , ) ,tY i j   where  is a
parameter that measures the contagiousness of the illness. 
 
£2 Selects a random number  0,1p  from a flat distribution and compare it with

tv  and av   number of passengers per day. 
 
£3 O l h h d if h i£3 One leaves the system unchanged if tp v , otherwise one sets ( ) 1tX   
and ( )tY   , where   stands for the indexes of a neighboring cell. 
 
£4 If a is a cell connected by air traveling network and ap v then start infection£4 If a  is a cell connected by air traveling network and ap v then start infection
in a . 
 

Introducing noise into the dynamics… 

 
£ Noise 1 Choose ( , )tX i j   at random 
 
£ Noise 2 Select a random number  0 1 and compare it with 1/ kt£ Noise 2 Select a random number  0,1p and compare it with / ktw e
 
£ Noise 2 If p w  then start the infection 



RESULTS I 

 

 

Movie I:      Terrestrial   –  No aerial  –   No Noise   –   S=1 

Movie II:     Terrestrial  –  No aerial  –    Noise         –   S=1 

Movie III:   Terrestrial  –   Aerial       –     No noise   –  S=1 

Mo ie IV    Terrestrial      Aerial             Noise             S 1 Movie IV:   Terrestrial  –   Aerial       –     Noise          –  S=1 

Movie V:     Terrestrial  –   Aerial      –      No Noise  –  S=0.1 

Movie VI:   Terrestrial   –   Aerial     –      Noise         –  S=0.1 Movie VI:   Terrestrial       Aerial            Noise            S 0.1 

 

 

Movie VII: Actual data of the geographical spread of influenza in Mexico 

 

Movie VIII: Fitting simulation of the geographical spread of influenza in 
Mexico 
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Incidence of Influenza A (H1N1) in Mexico (Total number of cases: 28,347)
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Phase transitionPhase transition
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Relationship between epidemic sizes with population density. Note that there is not an apparent
correlation as it would be expected from the law of mass action.
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SOME CONCLUSIONS 
 

When we use actual data from the influenza pandemics in Mexico in 2009,
the model is able to reproduce both, the local dynamics of the epidemics
and the stochastic global path of the pandemic, including the effect of
social distancing measures. 
 

 
The local dynamics is able to reproduce a wide variety of behaviors,
including sustained oscillations, and when it is combined with a stochastic
spatial spread, the system becomes noise-driven, and the complete model
is able to reproduce fade outs and a great variability in epidemic sizes. 
 
We have neatly separated the parameters that regulate the specific natural
history of an infectious viral disease, from the parameters that simulate
demographic and social conditions of the domain where the disease is
spread. 
 
By doing so the dynamics can be regarded as the result of the interplay
between the progress of the disease and the changes in the network by
which it is scattered, so we can use this model to predict the effects of
taking 4 kinds of measures to manage the pandemic, namely,  
1) Social measures that reduce people mobility 
2) Reduce the number of flights, or even cancel them altogether and,  
3) Administering mass vaccination, either compulsory or not. If one
associates a cost to each one of these measures, one could use this model
to decide the best cost/benefit strategy to combat a future outbreak. 
4) Antiviral administration 

 
We found that pandemics can be driven solely by noise, which is a new

d l Th f i f h i lunexpected result. Therefore, one can infer that vaccines are only very
efficient if applied timely. 
 
The basic reproduction number, oR ,   depends on the stochastic nature of
the infection spread. 



Movies 
 
Movie S1. No aerial­No Thermal noise­Terrestrial­ 1S   
At  the  onset  of  the  spread  of  the  infection  there  are  waves  that  form
concentric  circles  and  they  are  influenced  by  the  population  density  andy y p p y
terrestrial mobility  fv  but the front waves remain during the propagation. 
 
Movie S2. No aerial­Thermal noise­Terrestrial­ 1S   
Initially  propagating  concentric  waves  can  be  observed  but  noise  has  a
blurring  effect.  The  front  waves  persist  at  the  boundaries  of  new  infected
areas After a while a pulsatile‐like sustained dynamics is attained Notice thatareas. After a while a pulsatile‐like sustained dynamics is attained. Notice that
in the absence of air traveling after two years, the infection does not cover the
entire Mexican territory. 
 
Movie S3. Terrestrial­Aerial­No thermal Noise­ 1S   
At  the  onset  of  the  spread  of  the  infection  there  are  waves  that  form
concentric circles but given aerial transport the infection spreads quickly toconcentric  circles but  given aerial  transport  the  infection  spreads quickly  to
other  parts  of  the  country.  Once  the  spread  of  the  infection  reaches  other
places  the  local  spread  is  due  to  terrestrial movement manifested by waves
that  form  transient  concentric  circles.  There  is  a  clash  of  front waves  and  a
pulsatile‐like behavior  is  soon  apparent  and  the  spread  is  sustained both  in
space and time. 

  
Movie S4. Terrestrial­Aerial­Thermal noise­ 1S   
The infection spreads quickly to all over the country and it immediately shows
a  sustained  and  pulsatile‐like  behavior.  The  presence  of  noise  makes  wave
fronts not discernible. The  infection exhibits a regular behavior  in  the major
cities of the country from which it spreads locally via terrestrial mobility.  
  
Movie S5. Terrestrial­Aerial­No Noise­ 0 . 1S   
The infection spreads quickly to all over the country but the front waves are
not  renewed and  they eventually  fade‐out. Hence,  the  lack of noise does not
maintain the pandemic. 
 
Movie S6  Terrestrial Aerial Noise 0 1S  Movie S6. Terrestrial­Aerial­Noise­ 0 . 1S   
The  infection  spreads  quickly  to  all  over  the  country  but  there  are  not
apparent front waves. The presence of noise leads to an endemic state of the
pandemic. 
 



Still‐Image of Movie S7 Actual Data
The infection starts at a small Village in the state of Veracruz. It rapidly spreads to the major cities of the
country. No waves are observed because the movie considers the incidence of infection, i.e., new cases per
day The infection appears in the most populated areas of Mexico which can be considered as hubs from airday. The infection appears in the most populated areas of Mexico which can be considered as hubs from air
traveling. The pandemic persists for some time until it completely disappears.



Still‐Image of Movie S8 Fitting of the Model
The infection starts at a small Village in the state of Veracruz. It rapidly spreads to the major cities of the
country. No apparent waves are formed because in this simulation we also took into account the daily
incidence of the infection. The infection persists cyclically in the most populated areas of Mexico until the
pandemic disappears. Small waves of propagation are hardly noticed.








