Timing of vaccination campaigns against pandemic influenza in a population dynamical model of Vancouver, Canada

Jessica M. Conway<sup>1,2</sup>, Rafael Meza<sup>2</sup>, Bahman Davoudi-Dehagi<sup>2</sup>, Ashleigh Tuite<sup>3</sup>, Babak Pourbohloul<sup>2</sup>, and the CanPan Team

<sup>1</sup>Department of Mathematics University of British Columbia

<sup>2</sup>Division of Mathematical Modeling University of British Columbia Centre for Disease Control

> <sup>3</sup>Dalla Lana School of Public Health University of Toronto

#### January 11, 2011

# Introduction - pH1N1 influenza

- In BC: First cases in April/May 2009
  - ... but epidemic began in earnest at the start of September.
- 1080 hospitalizations / 57 deaths in BC.
- Characterized by higher attack rates in younger individuals.



# Introduction - Immunization

BC pH1N1 vaccination campaign began Oct. 26th, 2009.



#### Goal:

- Model pandemic influenza in an urban setting (we use GVRD as representative).
- Examine role of vaccination campaign timing and targeting strategies in mitigating impact of pandemic.

Conway et al. (UBC)

Campaign Timing in Vancouver, CAN

## Simplified Model Schematic



Complicating details:

- Split exposed, infectious compartments so distribution of time spent in them is a more realistic gamma.
- Heterogeneous model: each compartment represents a combination of different age and activity levels...

#### Age and activity levels

- Age Address different vulnerability to infection, mortality rates, etc and assess different vaccination coverage strategies.
- Activity Capture contribution of individuals with very high contact rates.



Note: We focus on GVRD as a representative urban area. Results shown for broader age groups (to compare with data).

Conway et al. (UBC)

Campaign Timing in Vancouver, CAN

# Simplified Model Schematic

Each compartment represents 40 sub-compartments (8 age groups  $\times$  5 activity levels).



Further key detail (before you ask!):

 Carefully derive contact probabilities for transmissibility from Vancouver contact network
e.g. probability that someone age 25-54 with low activity level contacts someone age 5-17 with high activity levels, etc.

#### **Baseline Parameters**



| Variable                                      | Value              |
|-----------------------------------------------|--------------------|
| Latent period (mean)                          | 3 days             |
| Initial asymptomatic infectious period (mean) | 1 day              |
| Total duration of infectiousness (mean)       | 7 days             |
| Basic reproduction number $R_0$               | 1.4                |
| Vaccine Efficacy                              | 0.9                |
| Proportion of pop. with pre-existing immunity | 0.5 (age 55+ only) |

#### Vaccination Coverages Consider 3 vaccination coverage strategies:

Actual strategy Actual coverages in GVRD. UC strategy Uniform coverage across all age groups

PC strategy Immunizing school-aged children & their parents only

Note: overall coverage 45% for Actual/UC, 36% for PC.





ICs: 100 cases on Sept 6 (educated guess, based on 10 confirmed cases).

8-week vaccination campaign starting October 26th, 2010.

# Vaccination rates

- Vaccinations concurrent with epidemic
- What kind of distribution rates should we consider?





ICs: 100 cases on Sept 6 (educated guess, based on 10 confirmed cases).

8-week vaccination campaign starting October 26th, 2010.



Conway et al. (UBC)

Campaign Timing in Vancouver, CAN



ICs: 100 cases on Sept 6 (educated guess, based on 10 confirmed cases).

8-week vaccination campaign starting October 26th, 2010.

# **Different Campaign Start Dates**



### Different coverage strategies - attack rate



Different coverage strategies - mortality



# Different coverage strategies Attack Rate: Mortality:



#### Notice:

- "Better" strategy depends on goals.
- As campaign is increasingly delayed, strategy becomes less important.

### Vaccine Efficacy ('Actual' strategy)



- Impact of efficacy diminished as epidemic progresses.
- A lesser vaccine distributed early is preferable.

#### Discussion

- Developed a model of pandemic influenza in an urban setting that
  - captures variability in age and behaviour
  - includes vaccinations concurrent with epidemic

validating it through comparison with pH1N1 influenza in GVRD.

- Different campaign start times: the sooner the better.
- Different coverage strategies: effective for campaigns started before/early in epidemic, less so for campaigns started later. Are the logistics worth the cost?









## Role of mortality parameters

#### Consider different mortality profiles:



#### Role of mortality parameters Resulting mortality reductions:



#### Time course of Vancouver epidemic



#### Sensitivity Analysis

Vary latent period (2-4 days) and infectious period (5-7 days).

