Methods

Results

Discussion

Conclusion

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Transmissibility of H5N1 avian influenza in Nigeria: The 2006 epidemic

Emmanuel J. Morales-Butler

Mathematical and Computational Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University

January 13, 2011

Linkun oli i okin	

Methods

Results

Discussion

Conclusion

Introduction

Methods

Results

Discussion

Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

l m	-	20	1.10	_+	0	\mathbf{n}
			1 10	ын 1		
		~~	~		-	

Methods

Results

Discussion

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Results

Discussion

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Introduction

Global health concerns:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Global health concerns:
 - Highly pathogenic avian influenza virus subtype H5N1 (HPAI H5N1) as a human treat

(ロ) (同) (三) (三) (三) (三) (○) (○)

- Global health concerns:
 - Highly pathogenic avian influenza virus subtype H5N1 (HPAI H5N1) as a human treat
 - Adaptation of HPAI H5N1 for human-to-human transmission

- Global health concerns:
 - Highly pathogenic avian influenza virus subtype H5N1 (HPAI H5N1) as a human treat
 - Adaptation of HPAI H5N1 for human-to-human transmission
 - Consequences: pandemic with high morbidity and mortality

- Global health concerns:
 - Highly pathogenic avian influenza virus subtype H5N1 (HPAI H5N1) as a human treat
 - Adaptation of HPAI H5N1 for human-to-human transmission
 - Consequences: pandemic with high morbidity and mortality
 - Economic impact in a human pandemic from the HPAI H5N1: several billion to several trillion dollars

- Global health concerns:
 - Highly pathogenic avian influenza virus subtype H5N1 (HPAI H5N1) as a human treat
 - Adaptation of HPAI H5N1 for human-to-human transmission
 - Consequences: pandemic with high morbidity and mortality
 - Economic impact in a human pandemic from the HPAI H5N1: several billion to several trillion dollars
- An example

- Global health concerns:
 - Highly pathogenic avian influenza virus subtype H5N1 (HPAI H5N1) as a human treat
 - Adaptation of HPAI H5N1 for human-to-human transmission
 - Consequences: pandemic with high morbidity and mortality
 - Economic impact in a human pandemic from the HPAI H5N1: several billion to several trillion dollars
- An example
 - 1918-1919 influenza pandemic (Spanish flu)

Introduction

- Global health concerns:
 - Highly pathogenic avian influenza virus subtype H5N1 (HPAI H5N1) as a human treat
 - Adaptation of HPAI H5N1 for human-to-human transmission
 - Consequences: pandemic with high morbidity and mortality
 - Economic impact in a human pandemic from the HPAI H5N1: several billion to several trillion dollars

- 1918-1919 influenza pandemic (Spanish flu)
 - Most devastating in recent history

Introduction

- Global health concerns:
 - Highly pathogenic avian influenza virus subtype H5N1 (HPAI H5N1) as a human treat
 - Adaptation of HPAI H5N1 for human-to-human transmission
 - Consequences: pandemic with high morbidity and mortality
 - Economic impact in a human pandemic from the HPAI H5N1: several billion to several trillion dollars

- 1918-1919 influenza pandemic (Spanish flu)
 - Most devastating in recent history
 - From \approx 20 to 100 million deaths

Introduction

- Global health concerns:
 - Highly pathogenic avian influenza virus subtype H5N1 (HPAI H5N1) as a human treat
 - Adaptation of HPAI H5N1 for human-to-human transmission
 - Consequences: pandemic with high morbidity and mortality
 - Economic impact in a human pandemic from the HPAI H5N1: several billion to several trillion dollars

- 1918-1919 influenza pandemic (Spanish flu)
 - Most devastating in recent history
 - From \approx 20 to 100 million deaths
 - Case fatality of \approx 2-6 percent

Introduction

- Global health concerns:
 - Highly pathogenic avian influenza virus subtype H5N1 (HPAI H5N1) as a human treat
 - Adaptation of HPAI H5N1 for human-to-human transmission
 - Consequences: pandemic with high morbidity and mortality
 - Economic impact in a human pandemic from the HPAI H5N1: several billion to several trillion dollars

- 1918-1919 influenza pandemic (Spanish flu)
 - Most devastating in recent history
 - From \approx 20 to 100 million deaths
 - Case fatality of \approx 2-6 percent
- Basic facts about HPAI H5N1:

Introduction

- Global health concerns:
 - Highly pathogenic avian influenza virus subtype H5N1 (HPAI H5N1) as a human treat
 - Adaptation of HPAI H5N1 for human-to-human transmission
 - Consequences: pandemic with high morbidity and mortality
 - Economic impact in a human pandemic from the HPAI H5N1: several billion to several trillion dollars

- 1918-1919 influenza pandemic (Spanish flu)
 - Most devastating in recent history
 - From \approx 20 to 100 million deaths
 - Case fatality of \approx 2-6 percent
- Basic facts about HPAI H5N1:
 - Virus isolation: 1996 in Guangdong Province, China

Introduction

- Global health concerns:
 - Highly pathogenic avian influenza virus subtype H5N1 (HPAI H5N1) as a human treat
 - Adaptation of HPAI H5N1 for human-to-human transmission
 - Consequences: pandemic with high morbidity and mortality
 - Economic impact in a human pandemic from the HPAI H5N1: several billion to several trillion dollars

- 1918-1919 influenza pandemic (Spanish flu)
 - Most devastating in recent history
 - From \approx 20 to 100 million deaths
 - Case fatality of \approx 2-6 percent
- Basic facts about HPAI H5N1:
 - Virus isolation: 1996 in Guangdong Province, China
 - To date:

Introduction

- Global health concerns:
 - Highly pathogenic avian influenza virus subtype H5N1 (HPAI H5N1) as a human treat
 - Adaptation of HPAI H5N1 for human-to-human transmission
 - Consequences: pandemic with high morbidity and mortality
 - Economic impact in a human pandemic from the HPAI H5N1: several billion to several trillion dollars

- 1918-1919 influenza pandemic (Spanish flu)
 - Most devastating in recent history
 - From \approx 20 to 100 million deaths
 - Case fatality of \approx 2-6 percent
- Basic facts about HPAI H5N1:
 - Virus isolation: 1996 in Guangdong Province, China
 - To date:
 - 505 cumulative human cases (known)

(ロ) (同) (三) (三) (三) (三) (○) (○)

Introduction

- Global health concerns:
 - Highly pathogenic avian influenza virus subtype H5N1 (HPAI H5N1) as a human treat
 - Adaptation of HPAI H5N1 for human-to-human transmission
 - Consequences: pandemic with high morbidity and mortality
 - Economic impact in a human pandemic from the HPAI H5N1: several billion to several trillion dollars

- 1918-1919 influenza pandemic (Spanish flu)
 - Most devastating in recent history
 - From \approx 20 to 100 million deaths
 - Case fatality of \approx 2-6 percent
- Basic facts about HPAI H5N1:
 - Virus isolation: 1996 in Guangdong Province, China
 - To date:
 - 505 cumulative human cases (known)
 - 300 cumulative fatal cases

(ロ) (同) (三) (三) (三) (三) (○) (○)

Introduction

- Global health concerns:
 - Highly pathogenic avian influenza virus subtype H5N1 (HPAI H5N1) as a human treat
 - Adaptation of HPAI H5N1 for human-to-human transmission
 - Consequences: pandemic with high morbidity and mortality
 - Economic impact in a human pandemic from the HPAI H5N1: several billion to several trillion dollars

- 1918-1919 influenza pandemic (Spanish flu)
 - Most devastating in recent history
 - From \approx 20 to 100 million deaths
 - Case fatality of \approx 2-6 percent
- Basic facts about HPAI H5N1:
 - Virus isolation: 1996 in Guangdong Province, China
 - To date:
 - 505 cumulative human cases (known)
 - 300 cumulative fatal cases
 - Case fatality rate: 59.4 percent

l m	-	20	1.10	_+	0	\mathbf{n}
			1 10	ын 1		
		~~	~		-	

Methods

Results

Discussion

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Methods

Results

Discussion

Conclusion

Introduction

Methods

Results

Discussion

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

- Factors that might facilitate the spreading:
 - Poverty

Methods

Results

Discussion

Conclusion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction

- Poverty
- Inadequate primary health care facilities

Results

Discussion

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction

- Poverty
- Inadequate primary health care facilities
- Inadequate knowledge of food safety protocols on poultry farms

Results

Discussion

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction

- Poverty
- Inadequate primary health care facilities
- Inadequate knowledge of food safety protocols on poultry farms
- Inability to differentiate risk factors associated with HPAI and other poultry diseases

Results

Discussion

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Factors that might facilitate the spreading:
 - Poverty
 - Inadequate primary health care facilities
 - Inadequate knowledge of food safety protocols on poultry farms
 - Inability to differentiate risk factors associated with HPAI and other poultry diseases
- Constrains containing the HPAI H5N1:

Results

Discussion

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction

• Factors that might facilitate the spreading:

- Poverty
- Inadequate primary health care facilities
- Inadequate knowledge of food safety protocols on poultry farms
- Inability to differentiate risk factors associated with HPAI and other poultry diseases

• Constrains containing the HPAI H5N1:

Delayed official decisions

Results

Discussion

Conclusion

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction

- Factors that might facilitate the spreading:
 - Poverty
 - Inadequate primary health care facilities
 - Inadequate knowledge of food safety protocols on poultry farms
 - Inability to differentiate risk factors associated with HPAI and other poultry diseases

- Delayed official decisions
- Lack of prompt intervention planning

Results

Discussion

Conclusion

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction

• Factors that might facilitate the spreading:

- Poverty
- Inadequate primary health care facilities
- Inadequate knowledge of food safety protocols on poultry farms
- Inability to differentiate risk factors associated with HPAI and other poultry diseases

- Delayed official decisions
- Lack of prompt intervention planning
- Poor preparedness for potential disease outbreaks

Results

Discussion

Conclusion

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction

• Factors that might facilitate the spreading:

- Poverty
- Inadequate primary health care facilities
- Inadequate knowledge of food safety protocols on poultry farms
- Inability to differentiate risk factors associated with HPAI and other poultry diseases

- Delayed official decisions
- Lack of prompt intervention planning
- Poor preparedness for potential disease outbreaks
- Corruption

Results

Conclusion

(ロ) (同) (三) (三) (三) (三) (○) (○)

Introduction

• Factors that might facilitate the spreading:

- Poverty
- Inadequate primary health care facilities
- Inadequate knowledge of food safety protocols on poultry farms
- Inability to differentiate risk factors associated with HPAI and other poultry diseases

- Delayed official decisions
- Lack of prompt intervention planning
- Poor preparedness for potential disease
 outbreaks
- Corruption
- Hesitation by farmers to report outbreaks

Results

Conclusion

Introduction

• Factors that might facilitate the spreading:

- Poverty
- Inadequate primary health care facilities
- Inadequate knowledge of food safety protocols on poultry farms
- Inability to differentiate risk factors associated with HPAI and other poultry diseases

• Constrains containing the HPAI H5N1:

- Delayed official decisions
- Lack of prompt intervention planning
- Poor preparedness for potential disease outbreaks
- Corruption
- Hesitation by farmers to report outbreaks

 Factors that increase public understanding:

Results

Conclusion

Introduction

- Factors that might facilitate the spreading:
 - Poverty
 - Inadequate primary health care facilities
 - Inadequate knowledge of food safety protocols on poultry farms
 - Inability to differentiate risk factors associated with HPAI and other poultry diseases

- Delayed official decisions
- Lack of prompt intervention planning
- Poor preparedness for potential disease outbreaks
- Corruption
- Hesitation by farmers to report outbreaks

- Factors that increase public understanding:
 - News media

Results

Conclusion

Introduction

- Factors that might facilitate the spreading:
 - Poverty
 - Inadequate primary health care facilities
 - Inadequate knowledge of food safety protocols on poultry farms
 - Inability to differentiate risk factors associated with HPAI and other poultry diseases

Constrains containing the HPAI H5N1:

- Delayed official decisions
- Lack of prompt intervention planning
- Poor preparedness for potential disease outbreaks
- Corruption
- Hesitation by farmers to report outbreaks

- Factors that increase public understanding:
 - News media
 - Government delayed public health messages

・ロト・四ト・モー・ ヨー うへぐ

Results

Conclusion

Introduction

- Factors that might facilitate the spreading:
 - Poverty
 - Inadequate primary health care facilities
 - Inadequate knowledge of food safety protocols on poultry farms
 - Inability to differentiate risk factors associated with HPAI and other poultry diseases

- Delayed official decisions
- Lack of prompt intervention planning
- Poor preparedness for potential disease outbreaks
- Corruption
- Hesitation by farmers to report outbreaks

- Factors that increase public understanding:
 - News media
 - Government delayed public health messages
 - Veterinarians

Results

Conclusion

Introduction

- Factors that might facilitate the spreading:
 - Poverty
 - Inadequate primary health care facilities
 - Inadequate knowledge of food safety protocols on poultry farms
 - Inability to differentiate risk factors associated with HPAI and other poultry diseases

• Constrains containing the HPAI H5N1:

- Delayed official decisions
- Lack of prompt intervention planning
- Poor preparedness for potential disease outbreaks
- Corruption
- · Hesitation by farmers to report outbreaks

 Factors that increase public understanding:

- News media
- Government delayed public health messages
- Veterinarians
- Internet
Methods

Results

Discussio

Conclusion

 A preliminary assessment of the basic reproduction number (*R*₀) of the HPAI H5N1 between poultry farms

• A preliminary assessment of the basic reproduction number (\mathcal{R}_0) of the HPAI H5N1 between poultry farms

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 Evaluation of the effectiveness of the intervention strategies

Introduction	Methods	Results	Discussion	Conclusion
		Data		

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Results

Data

• Source: National Veterinary Research Institute of Nigeria

Results

Data

- Source: National Veterinary Research Institute of Nigeria
- Description:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Data

- Source: National Veterinary Research Institute of Nigeria
- Description:
 - Weekly number of newly infected farms (by state), that were infected with HPAI H5N1 between January and June of 2006

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Data

- Source: National Veterinary Research Institute of Nigeria
- Description:
 - Weekly number of newly infected farms (by state), that were infected with HPAI H5N1 between January and June of 2006

backyard chickens raised without biosecurity measures commercially farmed chickens under high biosecurity semi–commercial chickens raised with some biosecurity measures Results

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

-			-	

Deterministic epidemic model

• **Type of model**: a temporal, non-spatial multi-stage compartmental epidemic model with classes of poultry farms

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- **Type of model**: a temporal, non-spatial multi-stage compartmental epidemic model with classes of poultry farms
- Model assumptions:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- **Type of model**: a temporal, non-spatial multi-stage compartmental epidemic model with classes of poultry farms
- Model assumptions:
 - Constant rates throughout time

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- **Type of model**: a temporal, non-spatial multi-stage compartmental epidemic model with classes of poultry farms
- Model assumptions:
 - Constant rates throughout time
 - Incubation and infectious **periods** are gamma-distributed with parameters (n_E, n_Eκ) and (n_I, n_Iγ), respectively

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- **Type of model**: a temporal, non-spatial multi-stage compartmental epidemic model with classes of poultry farms
- Model assumptions:
 - Constant rates throughout time
 - Incubation and infectious **periods** are gamma-distributed with parameters (n_E, n_Eκ) and (n_I, n_Iγ), respectively
 - Means $1/\kappa$ and $1/\gamma$, respectively

(ロ) (同) (三) (三) (三) (三) (○) (○)

Deterministic epidemic model

• **Type of model**: a temporal, non-spatial multi-stage compartmental epidemic model with classes of poultry farms

- Constant rates throughout time
- Incubation and infectious **periods** are gamma-distributed with parameters (n_E, n_Eκ) and (n_I, n_Iγ), respectively
 - Means $1/\kappa$ and $1/\gamma$, respectively
 - Variances $1/(n_E \kappa^2)$ and $1/(n_I \gamma^2)$, respectively

Deterministic epidemic model

• **Type of model**: a temporal, non-spatial multi-stage compartmental epidemic model with classes of poultry farms

- Constant rates throughout time
- Incubation and infectious **periods** are gamma-distributed with parameters (n_E, n_Eκ) and (n_I, n_Iγ), respectively
 - Means $1/\kappa$ and $1/\gamma$, respectively
 - Variances $1/(n_E \kappa^2)$ and $1/(n_I \gamma^2)$, respectively
- Contact process is assumed to be driven by homogeneous mixing

Deterministic epidemic model

• **Type of model**: a temporal, non-spatial multi-stage compartmental epidemic model with classes of poultry farms

- Constant rates throughout time
- Incubation and infectious **periods** are gamma-distributed with parameters (n_E, n_Eκ) and (n_I, n_Iγ), respectively
 - Means $1/\kappa$ and $1/\gamma$, respectively
 - Variances $1/(n_E \kappa^2)$ and $1/(n_I \gamma^2)$, respectively
- Contact process is assumed to be driven by homogeneous mixing
 - Infected poultry farms have the same transmission potential

Deterministic epidemic model

• **Type of model**: a temporal, non-spatial multi-stage compartmental epidemic model with classes of poultry farms

- Constant rates throughout time
- Incubation and infectious **periods** are gamma-distributed with parameters (n_E, n_Eκ) and (n_I, n_Iγ), respectively
 - Means $1/\kappa$ and $1/\gamma$, respectively
 - Variances $1/(n_E \kappa^2)$ and $1/(n_I \gamma^2)$, respectively
- Contact process is assumed to be driven by homogeneous mixing
 - · Infected poultry farms have the same transmission potential
 - The network of poultry farms is completely connected

Results

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Deterministic epidemic model

Schematic diagram

Methods

Results

Discussion

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Survivor functions

Results

Discussion

Conclusion

Survivor functions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

The impact of interventions on the HPAI H5N1 transmission rate

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The impact of interventions on the HPAI H5N1 transmission rate

• The intervention strategies to control the spread of HPAI H5N1 include:

Type of intervention	Implementation date
<i>Culling</i> (depopulation of infected premises or decontamination)	Feb. 7 th , 2006
Movement restrictions	Feb. 20 th , 2006
Payment of compensation	late 2006 until early 2007
Improved biosecurity	_

The impact of interventions on the HPAI H5N1 transmission rate

• The intervention strategies to control the spread of HPAI H5N1 include:

Type of intervention	Implementation date
<i>Culling</i> (depopulation of infected premises or decontamination)	Feb. 7 th , 2006
Movement restrictions	Feb. 20 th , 2006
Payment of compensation	late 2006 until early 2007
Improved biosecurity	—

Assumption: the net effect of these interventions have an instantaneous impact on the transmission rate β(t)

$$\beta(t) = \begin{cases} \beta_0 & \text{for } t < \tau, \\ \beta_1 & \text{for } t \ge \tau, \end{cases}$$

where $\beta_{\rm 0}>\beta_{\rm 1},$ and τ is the time at which interventions begin

Methods

Results

Discussion

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Results

Conclusion

Parameter estimation

• Vector of parameters: $\vec{\theta} = (\beta_0, \beta_1)^T \in \mathbb{R}^2_+$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Vector of parameters: $\vec{\theta} = (\beta_0, \beta_1)^T \in \mathbb{R}^2_+$
- Mathematical model:

$$f(t_i, \vec{\theta}) = \begin{cases} C(t_1) & \text{if } i = 1\\ C(t_i) - C(t_{i-1}) & \text{if } 2 \le i \le n \end{cases}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Parameter estimation

- Vector of parameters: $\vec{\theta} = (\beta_0, \beta_1)^T \in \mathbb{R}^2_+$
- Mathematical model:

$$f(t_i, \vec{\theta}) = \begin{cases} C(t_1) & \text{if } i = 1\\ C(t_i) - C(t_{i-1}) & \text{if } 2 \le i \le n \end{cases}$$

• Statistical model: (ordinary least square)

- Vector of parameters: $\vec{\theta} = (\beta_0, \beta_1)^T \in \mathbb{R}^2_+$
- Mathematical model:

$$f(t_i, \vec{\theta}) = \begin{cases} C(t_1) & \text{if } i = 1\\ C(t_i) - C(t_{i-1}) & \text{if } 2 \le i \le n \end{cases}$$

- Statistical model: (ordinary least square)
 - Random variable: $Y_i = f(t_i; \vec{\theta}_0) + \varepsilon_i$, for i = 1, ..., n

- Vector of parameters: $\vec{\theta} = (\beta_0, \beta_1)^T \in \mathbb{R}^2_+$
- Mathematical model:

$$f(t_i, \vec{\theta}) = \begin{cases} C(t_1) & \text{if } i = 1\\ C(t_i) - C(t_{i-1}) & \text{if } 2 \le i \le n \end{cases}$$

- Statistical model: (ordinary least square)
 - Random variable: $Y_i = f(t_i; \vec{\theta}_0) + \varepsilon_i$, for i = 1, ..., n
 - A realization: $y_i = f(t_i; \vec{\theta}_0) + \epsilon_i$, for i = 1, ..., n

(日) (日) (日) (日) (日) (日) (日)

- Vector of parameters: $\vec{\theta} = (\beta_0, \beta_1)^T \in \mathbb{R}^2_+$
- Mathematical model:

$$f(t_i, \vec{\theta}) = \begin{cases} C(t_1) & \text{if } i = 1\\ C(t_i) - C(t_{i-1}) & \text{if } 2 \le i \le n \end{cases}$$

- Statistical model: (ordinary least square)
 - Random variable: $Y_i = f(t_i; \vec{\theta}_0) + \varepsilon_i$, for i = 1, ..., n
 - A realization: $y_i = f(t_i; \vec{\theta}_0) + \epsilon_i$, for i = 1, ..., n
- Cost functional:

$$J_n(\vec{\theta}) = \sum_{i=1}^n |y_i - f(t_i; \vec{\theta})|^2$$

Parameter estimation

- Vector of parameters: $\vec{\theta} = (\beta_0, \beta_1)^T \in \mathbb{R}^2_+$
- Mathematical model:

$$f(t_i, \vec{\theta}) = \begin{cases} C(t_1) & \text{if } i = 1\\ C(t_i) - C(t_{i-1}) & \text{if } 2 \le i \le n \end{cases}$$

- Statistical model: (ordinary least square)
 - Random variable: $Y_i = f(t_i; \vec{\theta}_0) + \varepsilon_i$, for i = 1, ..., n
 - A realization: $y_i = f(t_i; \vec{\theta}_0) + \epsilon_i$, for i = 1, ..., n
- Cost functional:

$$J_n(\vec{\theta}) = \sum_{i=1}^n |y_i - f(t_i; \vec{\theta})|^2$$

• Estimation of $\hat{\theta}$: (*fminsearch, Isqnonlin* and *Isqcurvefit*: MATLAB 7.9.0 (R2009b, The MathWorks))

$$\vec{\theta}^{(k+1)} = \operatorname*{arg\,min}_{\vec{\theta} \in \mathbb{R}^2_+} J_n(\vec{\theta}^{(k)})$$

Results

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Parameter estimation: implementation

Input:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Parameter estimation: implementation

symbol	description
Niter	maximum number of iterations
q	resolution desired for convergence ($TOL = 10^{-q}$)
k	set the number of iterations to zero $(k = 0)$
$\vec{\theta}^{(0)}$	initial guess values

Input:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Parameter estimation: implementation

symbol	description
Niter	maximum number of iterations
q	resolution desired for convergence ($TOL = 10^{-q}$)
k	set the number of iterations to zero $(k = 0)$
$\vec{\theta}^{(0)}$	initial guess values

$\begin{array}{l} \text{step 1} \ \ \text{Do} \ \{ \ \text{step 2 to step 3} \ \} \\ \text{While}((k \leq \textit{N}_{\textit{iter}})\&(||\vec{\theta}^{(k-1)} - \vec{\theta}^{(k)}||_2 \geq \text{TOL})) \end{array}$
Parameter estimation: implementation

	symbol	description
	N _{iter}	maximum number of iterations
Input:	q	resolution desired for convergence ($TOL = 10^{-q}$)
	k	set the number of iterations to zero $(k = 0)$
	$\vec{\theta}^{(0)}$	initial guess values

step 1 Do { step 2 to step 3 }
While($(k \le N_{iter})$ &($||\vec{\theta}^{(k-1)} - \vec{\theta}^{(k)}||_2 \ge \text{TOL}$))
step 2 Compute the k + 1 estimate $\vec{\theta}^{(k+1)}$ for
the estimator $\vec{\theta}_{LS}$ by solving

$$ec{ heta^{(k+1)}} = rgmin_{ec{ heta}\in\mathbb{R}^2_+} J_n(ec{ heta^{(k)}})$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Inpu

Parameter estimation: implementation

	symbol	description
	N _{iter}	maximum number of iterations
:	q	resolution desired for convergence ($TOL = 10^{-q}$)
	k	set the number of iterations to zero ($k = 0$)
	$\vec{\theta}^{(0)}$	initial guess values

step 1 Do { step 2 to step 3 } While($(k \le N_{iter})$ &($||\vec{\theta}^{(k-1)} - \vec{\theta}^{(k)}||_2 \ge \text{TOL}$)) step 2 Compute the k + 1 estimate $\vec{\theta}^{(k+1)}$ for the estimator $\vec{\theta}_{LS}$ by solving $\vec{\theta}^{(k+1)} = \arg \min J_{\theta}(\vec{\theta}^{(k)})$

$$ec{ heta}\in\mathbb{R}^2_+$$

step 3 Increment the number of iteration by one k = k + 1

Inpu

Parameter estimation: implementation

	symbol	description
	Niter	maximum number of iterations
t: _	q	resolution desired for convergence ($TOL = 10^{-q}$)
	k	set the number of iterations to zero $(k = 0)$
	$\vec{\theta}^{(0)}$	initial guess values

step 1 Do { step 2 to step 3 } While($(k \le N_{iter})$ &($||\vec{\theta}^{(k-1)} - \vec{\theta}^{(k)}||_2 \ge \text{TOL}$)) step 2 Compute the k + 1 estimate $\vec{\theta}^{(k+1)}$ for the estimator $\vec{\theta}_{LS}$ by solving $\vec{\theta}^{(k+1)} = \arg \min L(\vec{\theta}^{(k)})$

$$\bar{ heta}^{(k+1)} = \operatorname*{arg\,min}_{ec{ heta}\in\mathbb{R}^2_+} J_n(ar{ heta}^{(k)})$$

step 3 Increment the number of iteration by one k = k + 1Output: Set the estimator $\hat{\theta}_{LS} = \vec{\theta}^{(k)}$, where $\vec{\theta}^{(k)}$ is a realization of the random variable $\hat{\theta}_{LS}$ Introduction

Methods

Results

Discussion

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Empirical distributions

Introduction

Methods

Results

Discussion

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Empirical distributions

Definitions:

Discussion

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Empirical distributions

Definitions:

 The peak epidemic size is defined as the maximum number of new infected farms throughout the entire course of an epidemic (max{f})

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Empirical distributions

Definitions:

- The peak epidemic size is defined as the maximum number of new infected farms throughout the entire course of an epidemic (max{f})
- 2) The **epidemic size** at week ten is defined as the cumulative number of new infected poultry farms at week ten (C(t = 10))

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Stochastic epidemic model

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Stochastic epidemic model

• Markov jump process: $X_t = \{(S_t, E_{1,t}, ..., E_{n_E,t}, I_{1,t}, ..., I_{n_l,t}, R_t) : t \in \mathbb{R}_+\}$

Stochastic epidemic model

- Markov jump process: $X_t = \{(S_t, E_{1,t}, ..., E_{n_E,t}, I_{1,t}, ..., I_{n_l,t}, R_t) : t \in \mathbb{R}_+\}$
- State space: ℤ^{n_E+n_l+2}

							43	0	
ł	ļ		ł	U	u	G		U	

(ロ) (同) (三) (三) (三) (三) (○) (○)

Stochastic epidemic model

- Markov jump process: $X_t = \{(S_t, E_{1,t}, ..., E_{n_E,t}, I_{1,t}, ..., I_{n_I,t}, R_t) : t \in \mathbb{R}_+\}$
- State space: Z^{n_E+n_l+2}
 →
- The notation $X + (e_{i+1} e_i)^T = [X_1, ..., X_i 1, X_{i+1} + 1, ..., X_{n_E+n_I+2}]$ indicates the current state of the process X after the occurrence of an event or "jump"

Stochastic epidemic model

- Markov jump process: $X_t = \{(S_t, E_{1,t}, ..., E_{n_E,t}, I_{1,t}, ..., I_{n_I,t}, R_t) : t \in \mathbb{R}_+\}$
- State space: ℤ^{n_E+n_l+2}
- The notation $X + (e_{i+1} e_i)^T = [X_1, ..., X_i 1, X_{i+1} + 1, ..., X_{n_E+n_i+2}]$ indicates the current state of the process X after the occurrence of an event or "jump"

Event	From	То	Rate
Exposure of poultry farms	Х	$X + (e_2 - e_1)^T$	$\beta SI/N$
Progression from the latent stage E_i to E_{i+1} for $i = 1,, n_E - 1$	Х	$X + (e_{i+2} - e_{i+1})^T$	n _E κE _i
Infection	Х	$X + (e_{n_F+2} - e_{n_F+1})^T$	n _E κE _{nE}
Progression from the infectious stage I_i to I_{i+1} for $i = 1,, n_l - 1$	Х	$X + (e_{i+n_E+2} - e_{i+n_E+1})^T$	$n_l \gamma l_i$
Removal	Х	$X + (e_{n_E+n_l+2} - e_{n_E+n_l+1})^T$	$n_l \gamma I_{n_l}$

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Stochastic epidemic model

Stochastic epidemic model

The corresponding transition probabilities of the events are given by:

$$P(X_{t+\Delta t} - X_t = (e_2 - e_1)^T) = \frac{\beta_t}{N_t} S_t \sum_{j=1}^{n_l} I_t \Delta t + o(\Delta t)$$

$$P(X_{t+\Delta t} - X_t = (e_{i+2} - e_{i+1})^T) = n_E \kappa E_{i,t} \Delta t + o(\Delta t)$$
for $i = 1, \dots, n_E - 1$

$$P(X_{t+\Delta t} - X_t = (e_{n_E+2} - e_{n_E+1})^T) = n_E \kappa E_{n_E,t} \Delta t + o(\Delta t)$$

$$P(X_{t+\Delta t} - X_t = (e_{i+n_E+2} - e_{i+n_E+1})^T) = n_I \gamma I_{i,t} \Delta t + o(\Delta t)$$
for $i = 1, \dots, n_l - 1$

$$P(X_{t+\Delta t} - X_t = (e_{n_E+n_l+2} - e_{n_E+n_l+1})^T) = n_l \gamma I_{n_l,t} \Delta t + o(\Delta t)$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Stochastic epidemic model

Conclusion

Stochastic epidemic model

Assumptions:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Stochastic epidemic model

Assumptions:

Waiting times (0 < W₁ < W₂ < . . .) with exponentially distributed increments ({*T_i*})

$$P(T_i = W_i - W_{i-1} > t | W_j, j \le i-1) = e^{-t\mu(W_{i-1})}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Stochastic epidemic model

Assumptions:

Waiting times (0 < W₁ < W₂ < . . .) with exponentially distributed increments ({*T_i*})

$$P(T_i = W_i - W_{i-1} > t | W_j, j \le i-1) = e^{-t\mu(W_{i-1})}$$

• Parameter μ

$$\mu(W_{i-1}) = \left(\frac{\beta(W_{i-1})}{N(W_{i-1})}S(W_{i-1})\sum_{j=1}^{n_l} I_j(W_{i-1}) + n_E \kappa \sum_{j=1}^{n_E} E_j(W_{i-1}) + n_l \gamma \sum_{j=1}^{n_l} I_j(W_{i-1})\right)^{-1}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Stochastic epidemic model

Assumptions:

Waiting times (0 < W₁ < W₂ < . . .) with exponentially distributed increments ({*T_i*})

$$P(T_i = W_i - W_{i-1} > t | W_j, j \le i-1) = e^{-t\mu(W_{i-1})}$$

• Parameter μ

$$\mu(W_{i-1}) = \left(\frac{\beta(W_{i-1})}{N(W_{i-1})}S(W_{i-1})\sum_{j=1}^{n_l} I_j(W_{i-1}) + n_E \kappa \sum_{j=1}^{n_E} E_j(W_{i-1}) + n_l \gamma \sum_{j=1}^{n_l} I_j(W_{i-1})\right)^{-1}$$

Implementation:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Stochastic epidemic model

Assumptions:

Waiting times (0 < W₁ < W₂ < . . .) with exponentially distributed increments ({*T_i*})

$$P(T_i = W_i - W_{i-1} > t | W_j, j \le i-1) = e^{-t\mu(W_{i-1})}$$

• Parameter μ

$$\mu(W_{i-1}) = \left(\frac{\beta(W_{i-1})}{N(W_{i-1})}S(W_{i-1})\sum_{j=1}^{n_l} I_j(W_{i-1}) + n_E \kappa \sum_{j=1}^{n_E} E_j(W_{i-1}) + n_l \gamma \sum_{j=1}^{n_l} I_j(W_{i-1})\right)^{-1}$$

Implementation:

• Gillespie's direct algorithm [D. T. Gillespie, 1976]

Discussion

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Table 1: Model parameters

Conclusion

Table 1: Model parameters

Symbol	Description	Source	Value
β_0	Pre-intervention transmission rate	Estimated	2.33 weeks ⁻¹
β_1	Post-intervention transmission rate	Estimated	(95% CI: 2.26, 2.41) 0.63 weeks ⁻¹ (95% CI: 0.54, 0.73)
$1/\kappa$	Mean incubation period	[J. A. Van der Goot, et. at., PNAS 2005]	2 days
$1/\gamma$	Mean infectious period	[J. A. Van der Goot, et. at., PNAS 2005]	6.3 days
$I_{1}(t_{1})$	Initial number of infected poultry farms	From data	1
$N(t_1)$	Initial total number of poultry farms	[Federal Department of Livestock]	7,000
n _E	Number of sub-compartment for the exposed class	[J. A. Van der Goot, <i>et. at.</i> , PNAS 2005, M. E. Bos, <i>et. at.</i> , Vet. Research 2007]	20
n _l	Number of subcompartment for the infectious class	[J. A. Van der Goot, <i>et. at.</i> , PNAS 2005, M. E. Bos, <i>et. at.</i> , Vet. Research 2007]	20
au	Time at which interventions begin	[F. O. Fasina, et. at., Epid. Inf. 2009]	4 th week (Feb. 7 th , 2006)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction	Methods	Results	Discussion	Conclusion
		Data and fit		

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Discussion

Conclusion

Data and fit

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Introduction

Methods

Results

Discussion

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Residual plots

Introduction

Methods

Results

Discussion

Conclusion

Residual plots

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Table 2: Basic reproduction number estimates

Table 2: Basic reproduction number estimates

Number of	F	Basic reproduction	Basic reproduction				
compartm	ents	number formula	Estimate	$SE(\hat{\mathcal{R}}_0)$	95% CI		
n _E	nı	$(\mathcal{R}_0(\lambda=1.156,n_E,n_I))$	$(\hat{\mathcal{R}}_0)$				
_	-	$\mathcal{R}_0 = \beta_0 D_I$	2.10	0.03	(2.04, 2.17)		
_	_	$\mathcal{R}_{p} = \beta_{1} D_{l}$	0.57	0.04	(0.48, 0.67)		
1	1	$(\lambda D_l + 1)(\lambda D_E + 1)$	2.72	0.04	(2.59, 2.84)		
1	<i>n</i> _l = 20	$\frac{\lambda D_I (\lambda D_E + 1)}{1 - (\lambda D_I / n_I + 1)^{-n_I}}$	2.17	0.03	(2.08, 2.26)		
1	$n_l ightarrow \infty$	$\frac{\lambda D_I (\lambda D_E + 1)}{1 - e^{-\lambda D_I}}$	2.14	0.03	(2.05, 2.23)		
$n_E = 20$	1	$(\lambda D_I + 1)(\lambda D_E/n_E + 1)^{n_E}$	2.83	0.04	(2.69, 2.98)		
<i>n</i> _E = 20	<i>n</i> _l = 20	$\frac{\lambda D_I (\lambda D_E / n_E + 1)^{n_E}}{1 - (\lambda D_I / n_I + 1)^{-n_I}}$	2.27	0.03	(2.16, 2.37)		
$n_{E} = 20$	$n_I ightarrow \infty$	$\frac{\lambda D_{I} (\lambda D_{E} / n_{E} + 1)^{n_{E}}}{1 - e^{-\lambda D_{I}}}$	2.23	0.03	(2.13, 2.34)		
$n_E ightarrow \infty$	1	$(\lambda D_l + 1)e^{\lambda D_E}$	2.84	0.05	(2.7, 2.98)		
$n_E \rightarrow \infty$	<i>n</i> _l = 20	$\frac{\lambda D_l e^{\lambda D_E}}{1 - (\lambda D_l / n_l + 1)^{-n_l}}$	2.27	0.03	(2.17, 2.38)		
$n_E \rightarrow \infty$	$n_I \to \infty$	$\frac{\lambda D_l e^{\lambda D_E}}{1 - e^{-\lambda D_l}}$	2.24	0.03	(2.14, 2.34)		

Table 2: Basic reproduction number estimates

Number of		Basic reproduction	Basic reproduction				
compartm	ents	number formula	Estimate	$SE(\hat{\mathcal{R}}_0)$	95% CI		
n _E	n _l	$(\mathcal{R}_0(\lambda=1.156,n_E,n_I))$	$(\hat{\mathcal{R}}_0)$				
_	-	$\mathcal{R}_0 = \beta_0 D_I$	2.10	0.03	(2.04, 2.17)		
_	_	$\mathcal{R}_{\rho} = \beta_1 D_I$	0.57	0.04	(0.48, 0.67)		
1	1	$(\lambda D_I + 1)(\lambda D_E + 1)$	2.72	0.04	(2.59, 2.84)		
1	$n_{l} = 20$	$\frac{\lambda D_l(\lambda D_E + 1)}{1 - (\lambda D_l/n_l + 1)^{-n_l}}$	2.17	0.03	(2.08, 2.26)		
1	$n_l ightarrow \infty$	$\frac{\lambda D_I(\lambda D_E + 1)}{1 - e^{-\lambda D_I}}$	2.14	0.03	(2.05, 2.23)		
$n_{E} = 20$	1	$(\lambda D_I + 1)(\lambda D_E/n_E + 1)^{n_E}$	2.83	0.04	(2.69, 2.98)		
$n_{E} = 20$	$n_{l} = 20$	$\frac{\lambda D_l (\lambda D_E / n_E + 1)^{n_E}}{1 - (\lambda D_l / n_l + 1)^{-n_l}}$	2.27	0.03	(2.16, 2.37)		
$n_{E} = 20$	$n_l \to \infty$	$\frac{\lambda D_{I} (\lambda D_{E} / n_{E} + 1)^{n_{E}}}{1 - e^{-\lambda D_{I}}}$	2.23	0.03	(2.13, 2.34)		
$n_E ightarrow \infty$	1	$(\lambda D_I + 1)e^{\lambda D_E}$	2.84	0.05	(2.7, 2.98)		
$n_E \rightarrow \infty$	<i>n</i> _l = 20	$\frac{\lambda D_l e^{\lambda D_E}}{1 - (\lambda D_l / n_l + 1)^{-n_l}}$	2.27	0.03	(2.17, 2.38)		
$n_E \rightarrow \infty$	$n_l \to \infty$	$\frac{\lambda D_l e^{\lambda D_E}}{1 - e^{-\lambda D_l}}$	2.24	0.03	(2.14, 2.34)		

[H. J. Wearing et. at., PLoS Medicine 2005]

Table 2: Basic reproduction number estimates

Number of		Basic reproduction	Basic reproduction				
compartm	ents	number formula	Estimate	$SE(\hat{\mathcal{R}}_0)$	95% CI		
n _E	n _l	$(\mathcal{R}_0(\lambda=1.156,n_E,n_I))$	$(\hat{\mathcal{R}}_0)$				
_	-	$\mathcal{R}_0 = \beta_0 D_I$	2.10	0.03	(2.04, 2.17)		
_	_	$\mathcal{R}_{\rho} = \beta_1 D_I$	0.57	0.04	(0.48, 0.67)		
1	1	$(\lambda D_I + 1)(\lambda D_E + 1)$	2.72	0.04	(2.59, 2.84)		
1	$n_{l} = 20$	$\frac{\lambda D_l(\lambda D_E + 1)}{1 - (\lambda D_l/n_l + 1)^{-n_l}}$	2.17	0.03	(2.08, 2.26)		
1	$n_l ightarrow \infty$	$\frac{\lambda D_I(\lambda D_E + 1)}{1 - e^{-\lambda D_I}}$	2.14	0.03	(2.05, 2.23)		
$n_E = 20$	1	$(\lambda D_I + 1)(\lambda D_E/n_E + 1)^{n_E}$	2.83	0.04	(2.69, 2.98)		
<i>n</i> _E = 20	<i>n</i> _l = 20	$\frac{\lambda D_l (\lambda D_E / n_E + 1)^{n_E}}{1 - (\lambda D_l / n_l + 1)^{-n_l}}$	2.27	0.03	(2.16, 2.37)		
$n_{E} = 20$	$n_I ightarrow \infty$	$\frac{\lambda D_I (\lambda D_E / n_E + 1)^{n_E}}{1 - e^{-\lambda D_I}}$	2.23	0.03	(2.13, 2.34)		
$n_E ightarrow \infty$	1	$(\lambda D_I + 1)e^{\lambda D_E}$	2.84	0.05	(2.7, 2.98)		
$n_E \rightarrow \infty$	<i>n</i> _l = 20	$\frac{\lambda D_l e^{\lambda D_E}}{1 - (\lambda D_l / n_l + 1)^{-n_l}}$	2.27	0.03	(2.17, 2.38)		
$n_E \rightarrow \infty$	$n_I \rightarrow \infty$	$\frac{\lambda D_{l}e^{\lambda D_{E}}}{1-e^{-\lambda D_{l}}}$	2.24	0.03	(2.14, 2.34)		

[H. J. Wearing *et. at.*, PLoS Medicine 2005] [A.L. Lloyd, 2009]

◆□▶ ◆□▶ ◆ ミ▶ ◆ ミ▶ ・ ミー のへぐ

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Basic reproduction number

Conclusion

Basic reproduction number

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Effective reproduction number

Effective reproduction number

500

Introduction	Methods	Results	Discussion	
		Histograms	3	

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Introduction

Methods

Results

Discussion

・ロン ・ 四 と ・ 回 と ・ 回 と

æ

Conclusion

Histograms

Figure: With interventions
Introduction

Methods

Results

Discussion

Conclusion

Histograms

Figure: With interventions

Figure: Without interventions

・ロト・西ト・ヨト・ヨー うんぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Table 3: Peak and epidemic size estimates

Table 3: Peak and epidemic size estimates

		Random variables		
		Peak epidemic size	Epidemic size at	
			the 10 th week	
With	No.	29.8	92.4	
		(95% CI: 29.06, 30.7)	(95% CI: 89.7, 95.1)	
interventions	% of the $N(t_1)$	0.42%	1.32%	
		(95% CI: 0.41%, 0.43%)	(95% CI: 1.28%, 1.35%)	
Without	No.	1906.5	5071.6	
		(95% CI: 1891, 1921)	(95% CI: 5003, 5140)	
intorvontiona	% of the <i>N</i> (<i>t</i> ₁)	27.2%	72.4%	
Interventions		(95% CI: 27.02%, 27.45%)	(95% CI: 71.4%, 73.4%)	
Poduction	No.	1,876.7	4,979.2	
Reduction	%	98.4%	98.2%	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Table 4: Comparison of basic reproduction number estimates

Table 4: Comparison of basic reproduction number estimates

Country	Time period	A. I. virus subtype	Serial interval (days)	\mathcal{R}_0	Reference
Nigeria	Jan 2006- Jun 2006	H5N1	12	1.98-3.1	This study
* Thailand	Jul 2004- Nov 2004	H5N1	1-4	2.26-2.64	[T. Tiensin et. al., J. Infect. Dis. 2004]
Romania	May 2006- Jun 2006	H5N1	7	1.95-2.68	[M. P. Ward, et. al.,, Epid. Infect. 2008]
The Netherlands	Feb 2003- May 2003	H7N7	12	3.1-6.5	[A. Stegeman, et. al., J. Infect. Dis. 2004]
The Netherlands	Feb 2003- May 2003	H7N7	12	4.0-6.9	[A. Le Menach, et. al., Proc Biol. Sci. 2006]
The Netherlands	Feb 2003- May 2003	H7N7	1.9-3.4	1.1-1.9	[T. Garske, et. al., PLoS ONE 2007]
Italy	Mar 1999- Apr 2000	H7N7	5	1.9	[T. Garske, et. al., PLoS ONE 2007]
Canada (British Columbia)	Feb 2004 May 2004	H7N3	8.4	2.4	[T. Garske, <i>et. al.</i> , PLoS ONE 2007]

*With the exception of the Thai study (where \mathcal{R}_0 was estimated at the within-flock level, Tiensin *et al.*, 2007), all of these studies estimated \mathcal{R}_0 between flocks

Introduction	Methods	Results	Discussion	Conclusion
		Discussion		

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

	· • •

Methods

Results

Discussion

Conclusion

Discussion

Discussion

Conclusion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Discussion

• Summary:

• From the deterministic and statistical approaches: $\hat{\beta}_0, \hat{\beta}_1, \hat{\lambda} \rightarrow \hat{\mathcal{R}}_0, \hat{\mathcal{R}}_p, \hat{\mathcal{R}}_t \rightarrow \%$ of reduction in $\hat{\mathcal{R}}_t$

Discussion

Conclusion

(ロ) (同) (三) (三) (三) (三) (○) (○)

Discussion

- From the deterministic and statistical approaches: $\hat{\beta}_0, \hat{\beta}_1, \hat{\lambda} \rightarrow \hat{\mathcal{R}}_0, \hat{\mathcal{R}}_p, \hat{\mathcal{R}}_t \rightarrow \%$ of reduction in $\hat{\mathcal{R}}_t$
- From the stochastic approach: Empirical distributions \rightarrow expectations \rightarrow % of reduction

Discussion

Conclusion

(ロ) (同) (三) (三) (三) (三) (○) (○)

Discussion

- From the deterministic and statistical approaches:
 - $\hat{\beta}_0, \hat{\beta}_1, \hat{\lambda} \to \hat{\mathcal{R}}_0, \hat{\mathcal{R}}_p, \hat{\mathcal{R}}_t \to \%$ of reduction in $\hat{\mathcal{R}}_t$
- From the stochastic approach: Empirical distributions \rightarrow expectations \rightarrow % of reduction
- Main weakness our approaches: non-spatial consideration

Discussion

Conclusion

(ロ) (同) (三) (三) (三) (三) (○) (○)

Discussion

- From the deterministic and statistical approaches:
 - $\hat{\beta}_0, \hat{\beta}_1, \hat{\lambda} \to \hat{\mathcal{R}}_0, \hat{\mathcal{R}}_p, \hat{\mathcal{R}}_t \to \%$ of reduction in $\hat{\mathcal{R}}_t$
- From the stochastic approach: Empirical distributions \rightarrow expectations \rightarrow % of reduction
- Main weakness our approaches: non-spatial consideration
- Future considerations:

Discussion

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Discussion

- From the deterministic and statistical approaches:
 - $\hat{\beta}_0, \hat{\beta}_1, \hat{\lambda} \to \hat{\mathcal{R}}_0, \hat{\mathcal{R}}_p, \hat{\mathcal{R}}_t \to \%$ of reduction in $\hat{\mathcal{R}}_t$
- From the stochastic approach: Empirical distributions \rightarrow expectations \rightarrow % of reduction
- Main weakness our approaches: non-spatial consideration
- Future considerations:
 - [G. Chowell et. al., Preventive Veterinary Medicine 2006]

Discussion

Conclusion

Discussion

• Summary:

- From the deterministic and statistical approaches:
 - $\hat{\beta}_0, \hat{\beta}_1, \hat{\lambda} \to \hat{\mathcal{R}}_0, \hat{\mathcal{R}}_p, \hat{\mathcal{R}}_t \to \%$ of reduction in $\hat{\mathcal{R}}_t$
- From the stochastic approach: Empirical distributions \rightarrow expectations \rightarrow % of reduction
- Main weakness our approaches: non-spatial consideration

Future considerations:

- [G. Chowell et. al., Preventive Veterinary Medicine 2006]
- 1) the estimated total number of chickens, where each chicken is treated as an individual epidemiological unit, 2) the spatial coordinates for every poultry farm, 3) the inter-centroid for every county, and 4) the actual number or average number of farms per county, we could potentially analyze the epidemic at both the local and national level

Methods

Results

Discussion

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Conclusion

 This study shows that it is possible to adjust the incidence data with a non-spatial mathematical model and still obtain reasonable estimates of the basic reproduction number of HPAI H5N1 between poultry farms at a national level

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- This study shows that it is possible to adjust the incidence data with a non-spatial mathematical model and still obtain reasonable estimates of the basic reproduction number of HPAI H5N1 between poultry farms at a national level
- However, given the mechanisms of propagation of avian influenza between or within poultry farms, incorporating explicit spatial features into the mathematical model may be essential for understanding the dynamics of the Nigerian epidemic

Introduction

Results

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- This study shows that it is possible to adjust the incidence data with a non-spatial mathematical model and still obtain reasonable estimates of the basic reproduction number of HPAI H5N1 between poultry farms at a national level
- However, given the mechanisms of propagation of avian influenza between or within poultry farms, incorporating explicit spatial features into the mathematical model may be essential for understanding the dynamics of the Nigerian epidemic
- Our results confirmed the effectiveness of the intervention strategies

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- This study shows that it is possible to adjust the incidence data with a non-spatial mathematical model and still obtain reasonable estimates of the basic reproduction number of HPAI H5N1 between poultry farms at a national level
- However, given the mechanisms of propagation of avian influenza between or within poultry farms, incorporating explicit spatial features into the mathematical model may be essential for understanding the dynamics of the Nigerian epidemic
- Our results confirmed the effectiveness of the intervention strategies
- Overall, estimates for R₀ are in line with those estimates for the HPAI H5N1 outbreaks in Romania and an outbreak of H7N3 in British Columbia, Canada

- This study shows that it is possible to adjust the incidence data with a non-spatial mathematical model and still obtain reasonable estimates of the basic reproduction number of HPAI H5N1 between poultry farms at a national level
- However, given the mechanisms of propagation of avian influenza between or within poultry farms, incorporating explicit spatial features into the mathematical model may be essential for understanding the dynamics of the Nigerian epidemic
- Our results confirmed the effectiveness of the intervention strategies
- Overall, estimates for R₀ are in line with those estimates for the HPAI H5N1 outbreaks in Romania and an outbreak of H7N3 in British Columbia, Canada
- If spatial data related to the distribution of future outbreaks of HPAI H5N1 in Nigeria were to become available through improved surveillance, it could be incorporated into mathematical models to more accurately estimate key epidemiological parameters at both the local and national level, thus improving our ability to assess intervention strategies, and to predict and prevent future outbreaks

Introduction

Methods

Results

Discussion

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Acknowledgements

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Acknowledgements

Dr. Michael Golinski

Mathematical and Computational Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, PO Box 872402, Tempe, AZ 85287-2402, USA

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Acknowledgements

Dr. Michael Golinski

Mathematical and Computational Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, PO Box 872402, Tempe, AZ 85287-2402, USA

Dr. Ariel L. Rivas

Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27606, USA

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Acknowledgements

Dr. Michael Golinski

Mathematical and Computational Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, PO Box 872402, Tempe, AZ 85287-2402, USA

Dr. Ariel L. Rivas

Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27606, USA

Dr. Folorunso O. Fasina

National Veterinary Research Institute, PMB 01, Vom, Plateau, Nigeria and Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalenaan, the Netherlands

Acknowledgements

Dr. Michael Golinski

Mathematical and Computational Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, PO Box 872402, Tempe, AZ 85287-2402, USA

Dr. Ariel L. Rivas

Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27606, USA

Dr. Folorunso O. Fasina

National Veterinary Research Institute, PMB 01, Vom, Plateau, Nigeria and Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalenaan, the Netherlands

Dr. Gerardo Chowell

Mathematical and Computational Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, PO Box 872402, Tempe, AZ 85287-2402, USA and Division of Epidemiology and Population Studies, Fogarty International Center National Institutes of Health, Bethesda, MD, USA