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Introduction

• Global health concerns:
• Highly pathogenic avian influenza virus subtype H5N1

(HPAI H5N1) as a human treat
• Adaptation of HPAI H5N1 for human-to-human

transmission
• Consequences: pandemic with high morbidity and mortality
• Economic impact in a human pandemic from the HPAI

H5N1: several billion to several trillion dollars
• An example

• 1918-1919 influenza pandemic (Spanish flu)
• Most devastating in recent history
• From ≈ 20 to 100 million deaths
• Case fatality of ≈ 2-6 percent

• Basic facts about HPAI H5N1:
• Virus isolation: 1996 in Guangdong Province, China
• To date:

• 505 cumulative human cases (known)
• 300 cumulative fatal cases
• Case fatality rate: 59.4 percent
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• Source: National Veterinary Research Institute of Nigeria
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• Weekly number of newly infected farms (by state), that were
infected with HPAI H5N1 between January and June of
2006
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commercially farmed chickens under high biosecurity
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Deterministic epidemic model

• Type of model: a temporal, non-spatial multi-stage
compartmental epidemic model with classes of poultry
farms

• Model assumptions:
• Constant rates throughout time
• Incubation and infectious periods are gamma-distributed

with parameters (nE ,nEκ) and (nI ,nIγ), respectively
• Means 1/κ and 1/γ, respectively
• Variances 1/(nEκ

2) and 1/(nIγ
2), respectively

• Contact process is assumed to be driven by
homogeneous mixing
• Infected poultry farms have the same transmission potential
• The network of poultry farms is completely connected



Introduction Methods Results Discussion Conclusion

Deterministic epidemic model

• Type of model: a temporal, non-spatial multi-stage
compartmental epidemic model with classes of poultry
farms

• Model assumptions:
• Constant rates throughout time
• Incubation and infectious periods are gamma-distributed

with parameters (nE ,nEκ) and (nI ,nIγ), respectively
• Means 1/κ and 1/γ, respectively
• Variances 1/(nEκ

2) and 1/(nIγ
2), respectively

• Contact process is assumed to be driven by
homogeneous mixing
• Infected poultry farms have the same transmission potential
• The network of poultry farms is completely connected



Introduction Methods Results Discussion Conclusion

Deterministic epidemic model

• Type of model: a temporal, non-spatial multi-stage
compartmental epidemic model with classes of poultry
farms

• Model assumptions:

• Constant rates throughout time
• Incubation and infectious periods are gamma-distributed

with parameters (nE ,nEκ) and (nI ,nIγ), respectively
• Means 1/κ and 1/γ, respectively
• Variances 1/(nEκ

2) and 1/(nIγ
2), respectively

• Contact process is assumed to be driven by
homogeneous mixing
• Infected poultry farms have the same transmission potential
• The network of poultry farms is completely connected



Introduction Methods Results Discussion Conclusion

Deterministic epidemic model

• Type of model: a temporal, non-spatial multi-stage
compartmental epidemic model with classes of poultry
farms

• Model assumptions:
• Constant rates throughout time

• Incubation and infectious periods are gamma-distributed
with parameters (nE ,nEκ) and (nI ,nIγ), respectively
• Means 1/κ and 1/γ, respectively
• Variances 1/(nEκ

2) and 1/(nIγ
2), respectively

• Contact process is assumed to be driven by
homogeneous mixing
• Infected poultry farms have the same transmission potential
• The network of poultry farms is completely connected



Introduction Methods Results Discussion Conclusion

Deterministic epidemic model

• Type of model: a temporal, non-spatial multi-stage
compartmental epidemic model with classes of poultry
farms

• Model assumptions:
• Constant rates throughout time
• Incubation and infectious periods are gamma-distributed

with parameters (nE ,nEκ) and (nI ,nIγ), respectively

• Means 1/κ and 1/γ, respectively
• Variances 1/(nEκ

2) and 1/(nIγ
2), respectively

• Contact process is assumed to be driven by
homogeneous mixing
• Infected poultry farms have the same transmission potential
• The network of poultry farms is completely connected



Introduction Methods Results Discussion Conclusion

Deterministic epidemic model

• Type of model: a temporal, non-spatial multi-stage
compartmental epidemic model with classes of poultry
farms

• Model assumptions:
• Constant rates throughout time
• Incubation and infectious periods are gamma-distributed

with parameters (nE ,nEκ) and (nI ,nIγ), respectively
• Means 1/κ and 1/γ, respectively

• Variances 1/(nEκ
2) and 1/(nIγ

2), respectively
• Contact process is assumed to be driven by

homogeneous mixing
• Infected poultry farms have the same transmission potential
• The network of poultry farms is completely connected



Introduction Methods Results Discussion Conclusion

Deterministic epidemic model

• Type of model: a temporal, non-spatial multi-stage
compartmental epidemic model with classes of poultry
farms

• Model assumptions:
• Constant rates throughout time
• Incubation and infectious periods are gamma-distributed

with parameters (nE ,nEκ) and (nI ,nIγ), respectively
• Means 1/κ and 1/γ, respectively
• Variances 1/(nEκ

2) and 1/(nIγ
2), respectively

• Contact process is assumed to be driven by
homogeneous mixing
• Infected poultry farms have the same transmission potential
• The network of poultry farms is completely connected



Introduction Methods Results Discussion Conclusion

Deterministic epidemic model

• Type of model: a temporal, non-spatial multi-stage
compartmental epidemic model with classes of poultry
farms

• Model assumptions:
• Constant rates throughout time
• Incubation and infectious periods are gamma-distributed

with parameters (nE ,nEκ) and (nI ,nIγ), respectively
• Means 1/κ and 1/γ, respectively
• Variances 1/(nEκ

2) and 1/(nIγ
2), respectively

• Contact process is assumed to be driven by
homogeneous mixing

• Infected poultry farms have the same transmission potential
• The network of poultry farms is completely connected



Introduction Methods Results Discussion Conclusion

Deterministic epidemic model

• Type of model: a temporal, non-spatial multi-stage
compartmental epidemic model with classes of poultry
farms

• Model assumptions:
• Constant rates throughout time
• Incubation and infectious periods are gamma-distributed

with parameters (nE ,nEκ) and (nI ,nIγ), respectively
• Means 1/κ and 1/γ, respectively
• Variances 1/(nEκ

2) and 1/(nIγ
2), respectively

• Contact process is assumed to be driven by
homogeneous mixing
• Infected poultry farms have the same transmission potential

• The network of poultry farms is completely connected



Introduction Methods Results Discussion Conclusion

Deterministic epidemic model

• Type of model: a temporal, non-spatial multi-stage
compartmental epidemic model with classes of poultry
farms

• Model assumptions:
• Constant rates throughout time
• Incubation and infectious periods are gamma-distributed

with parameters (nE ,nEκ) and (nI ,nIγ), respectively
• Means 1/κ and 1/γ, respectively
• Variances 1/(nEκ

2) and 1/(nIγ
2), respectively

• Contact process is assumed to be driven by
homogeneous mixing
• Infected poultry farms have the same transmission potential
• The network of poultry farms is completely connected



Introduction Methods Results Discussion Conclusion

Deterministic epidemic model
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The impact of interventions on the HPAI H5N1
transmission rate

• The intervention strategies to control the spread of HPAI
H5N1 include:

Type of intervention Implementation date
Culling (depopulation

Feb. 7th, 2006of infected premises
or decontamination)
Movement restrictions Feb. 20th, 2006
Payment of compensation late 2006 until early 2007
Improved biosecurity —

• Assumption: the net effect of these interventions have an
instantaneous impact on the transmission rate β(t)

β(t) =

{
β0 for t < τ,
β1 for t ≥ τ ,

where β0 > β1, and τ is the time at which interventions
begin
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Parameter estimation

• Vector of parameters: ~θ = (β0, β1)T ∈ R2
+

• Mathematical model:

f (ti , ~θ) =

{
C(t1) if i = 1
C(ti)− C(ti−1) if 2 ≤ i ≤ n

• Statistical model: (ordinary least square)
• Random variable: Yi = f (ti ; ~θ0) + εi , for i = 1, . . . ,n
• A realization: yi = f (ti ; ~θ0) + εi , for i = 1, . . . ,n

• Cost functional:

Jn(~θ) =
n∑

i=1

|yi − f(ti ; ~θ)|2

• Estimation of θ̂: (fminsearch, lsqnonlin and lsqcurvefit : MATLAB
7.9.0 (R2009b, The MathWorks))

~θ(k+1) = arg min
~θ∈R2

+

Jn(~θ(k))
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Parameter estimation: implementation

Input:

symbol description
Niter maximum number of iterations

q resolution desired for convergence (TOL = 10−q)
k set the number of iterations to zero (k = 0)
~θ(0) initial guess values

step 1 Do { step 2 to step 3 }
While((k ≤ Niter )&(||~θ(k−1) − ~θ(k)||2 ≥ TOL))

step 2 Compute the k + 1 estimate ~θ(k+1) for
the estimator ~θLS by solving

~θ(k+1) = arg min
~θ∈R2

+

Jn(~θ(k))

step 3 Increment the number of iteration by
one k = k + 1

Output: Set the estimator θ̂LS = ~θ(k), where ~θ(k) is a
realization of the random variable θ̂LS
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Empirical distributions

Definitions:
1) The peak epidemic size is defined as the

maximum number of new infected farms
throughout the entire course of an epidemic
(max{f})

2) The epidemic size at week ten is defined as the
cumulative number of new infected poultry farms
at week ten (C(t = 10))
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Stochastic epidemic model

• Markov jump process: Xt = {(St ,E1,t , . . . ,EnE ,t , I1,t , . . . , InI ,t ,Rt ) : t ∈ R+}

• State space: ZnE +nI +2
+

• The notation X + (ei+1 − ei )
T = [X1, . . . ,Xi − 1,Xi+1 + 1, . . . ,XnE +nI +2]

indicates the current state of the process X after the occurrence of an event or
“jump”

Event From To Rate

Exposure of poultry farms X X + (e2 − e1)T βSI/N
Progression from the latent stage X X + (ei+2 − ei+1)T nEκEiEi to Ei+1 for i = 1, . . . , nE − 1
Infection X X + (enE +2 − enE +1)T nEκEnE
Progression from the infectious X X + (ei+nE +2 − ei+nE +1)T nIγIistage Ii to Ii+1 for i = 1, . . . , nI − 1
Removal X X + (enE +nI +2 − enE +nI +1)T nIγInI
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Stochastic epidemic model

The corresponding transition probabilities of the events are
given by:

P(Xt+∆t − Xt = (e2 − e1)T ) =
βt

Nt
St

nI∑
j=1

It ∆t + o(∆t)

P(Xt+∆t − Xt = (ei+2 − ei+1)T ) = nEκEi,t ∆t + o(∆t)
for i = 1, . . . ,nE − 1

P(Xt+∆t − Xt = (enE +2 − enE +1)T ) = nEκEnE ,t ∆t + o(∆t)

P(Xt+∆t − Xt = (ei+nE +2 − ei+nE +1)T ) = nIγIi,t ∆t + o(∆t)
for i = 1, . . . ,nI − 1
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Stochastic epidemic model

Assumptions:
• Waiting times (0 < W1 < W2 < . . .) with exponentially

distributed increments ({Ti})

P(Ti = Wi −Wi−1 > t |Wj , j ≤ i − 1) = e−tµ(Wi−1)

• Parameter µ

µ(Wi−1) =

 
β(Wi−1)

N(Wi−1)
S(Wi−1)

nIX
j=1

Ij(Wi−1)+nEκ

nEX
j=1

Ej(Wi−1)+nIγ

nIX
j=1

Ij(Wi−1)

!−1

Implementation:
• Gillespie’s direct algorithm [D. T. Gillespie, 1976]
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Table 1: Model parameters

Symbol Description Source Value

β0 Pre-intervention transmission rate Estimated 2.33 weeks−1

(95% CI: 2.26, 2.41)
β1 Post-intervention transmission rate Estimated 0.63 weeks−1

(95% CI: 0.54, 0.73)
1/κ Mean incubation period [J. A. Van der Goot, et. at., PNAS 2005] 2 days

1/γ Mean infectious period [J. A. Van der Goot, et. at., PNAS 2005] 6.3 days

I1(t1) Initial number of infected poultry farms From data 1

N(t1) Initial total number of poultry farms [Federal Department of Livestock] 7, 000

nE Number of sub-compartment [J. A. Van der Goot, et. at., PNAS 2005, 20
for the exposed class M. E. Bos, et. at., Vet. Research 2007]

nI Number of subcompartment [J. A. Van der Goot, et. at., PNAS 2005, 20
for the infectious class M. E. Bos, et. at., Vet. Research 2007]

τ Time at which interventions begin [F. O. Fasina, et. at., Epid. Inf. 2009] 4th week
(Feb. 7th , 2006)
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Residual plots
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Table 2: Basic reproduction number estimates

Number of Basic reproduction
compartments number formula Estimate SE(R̂0) 95% CI
nE nI (R0(λ = 1.156, nE , nI)) (R̂0)

– – R0 = β0DI 2.10 0.03 (2.04, 2.17)
– – Rp = β1DI 0.57 0.04 (0.48, 0.67)
1 1 (λDI + 1)(λDE + 1) 2.72 0.04 (2.59, 2.84)
1 nI = 20 λDI (λDE +1)

1−(λDI/nI +1)−nI
2.17 0.03 (2.08, 2.26)

1 nI →∞
λDI (λDE +1)

1−e−λDI
2.14 0.03 (2.05, 2.23)

nE = 20 1 (λDI + 1)(λDE/nE + 1)nE 2.83 0.04 (2.69, 2.98)

nE = 20 nI = 20 λDI (λDE/nE +1)nE

1−(λDI/nI +1)−nI
2.27 0.03 (2.16, 2.37)

nE = 20 nI →∞
λDI (λDE/nE +1)nE

1−e−λDI
2.23 0.03 (2.13, 2.34)

nE →∞ 1 (λDI + 1)eλDE 2.84 0.05 (2.7, 2.98)

nE →∞ nI = 20 λDI e
λDE

1−(λDI/nI +1)−nI
2.27 0.03 (2.17, 2.38)

nE →∞ nI →∞
λDI e

λDE

1−e−λDI
2.24 0.03 (2.14, 2.34)

[H. J. Wearing et. at., PLoS Medicine 2005]
[A.L. Lloyd, 2009]
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Effective reproduction number
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Table 3: Peak and epidemic size estimates

Random variables

Peak epidemic size
Epidemic size at

the 10th week

With No.
29.8 92.4

(95% CI: 29.06, 30.7) (95% CI: 89.7, 95.1)

interventions % of the N(t1)
0.42% 1.32%

(95% CI: 0.41%, 0.43%) (95% CI: 1.28%, 1.35%)

Without No.
1906.5 5071.6

(95% CI: 1891, 1921) (95% CI: 5003, 5140)

interventions % of the N(t1)
27.2% 72.4%

(95% CI: 27.02%, 27.45%) (95% CI: 71.4%, 73.4%)

Reduction
No. 1,876.7 4,979.2

% 98.4% 98.2%
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Table 4: Comparison of basic reproduction number
estimates

Country Time A. I. virus Serial interval R0 Referenceperiod subtype (days)

Nigeria Jan 2006- H5N1 12 1.98-3.1 This studyJun 2006
∗Thailand Jul 2004- H5N1 1-4 2.26-2.64 [T. Tiensin

Nov 2004 et. al., J. Infect. Dis. 2004]

Romania May 2006- H5N1 7 1.95-2.68 [M. P. Ward,
Jun 2006 et. al.,, Epid. Infect. 2008]

The Netherlands Feb 2003- H7N7 12 3.1-6.5 [A. Stegeman,
May 2003 et. al., J. Infect. Dis. 2004]

The Netherlands Feb 2003- H7N7 12 4.0-6.9 [A. Le Menach,
May 2003 et. al., Proc Biol. Sci. 2006]

The Netherlands Feb 2003- H7N7 1.9-3.4 1.1-1.9 [T. Garske,
May 2003 et. al., PLoS ONE 2007]

Italy Mar 1999- H7N7 5 1.9 [T. Garske,
Apr 2000 et. al., PLoS ONE 2007]

Canada Feb 2004 H7N3 8.4 2.4 [T. Garske,
(British Columbia) May 2004 et. al., PLoS ONE 2007]

∗With the exception of the Thai study (whereR0 was estimated at the within-flock level, Tiensin et al., 2007), all of

these studies estimatedR0 between flocks
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Country Time A. I. virus Serial interval R0 Referenceperiod subtype (days)

Nigeria Jan 2006- H5N1 12 1.98-3.1 This studyJun 2006
∗Thailand Jul 2004- H5N1 1-4 2.26-2.64 [T. Tiensin

Nov 2004 et. al., J. Infect. Dis. 2004]

Romania May 2006- H5N1 7 1.95-2.68 [M. P. Ward,
Jun 2006 et. al.,, Epid. Infect. 2008]

The Netherlands Feb 2003- H7N7 12 3.1-6.5 [A. Stegeman,
May 2003 et. al., J. Infect. Dis. 2004]

The Netherlands Feb 2003- H7N7 12 4.0-6.9 [A. Le Menach,
May 2003 et. al., Proc Biol. Sci. 2006]

The Netherlands Feb 2003- H7N7 1.9-3.4 1.1-1.9 [T. Garske,
May 2003 et. al., PLoS ONE 2007]

Italy Mar 1999- H7N7 5 1.9 [T. Garske,
Apr 2000 et. al., PLoS ONE 2007]

Canada Feb 2004 H7N3 8.4 2.4 [T. Garske,
(British Columbia) May 2004 et. al., PLoS ONE 2007]

∗With the exception of the Thai study (whereR0 was estimated at the within-flock level, Tiensin et al., 2007), all of

these studies estimatedR0 between flocks
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• Summary:
• From the deterministic and statistical approaches:
β̂0, β̂1, λ̂→ R̂0, R̂p, R̂t → % of reduction in R̂t

• From the stochastic approach:
Empirical distributions→ expectations→ % of reduction

• Main weakness our approaches: non-spatial
consideration

• Future considerations:
• [G. Chowell et. al., Preventive Veterinary Medicine 2006]
• 1) the estimated total number of chickens, where each

chicken is treated as an individual epidemiological unit, 2)
the spatial coordinates for every poultry farm, 3) the
inter-centroid for every county, and 4) the actual number or
average number of farms per county, we could potentially
analyze the epidemic at both the local and national level
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• This study shows that it is possible to adjust the incidence data with a non-spatial

mathematical model and still obtain reasonable estimates of the basic

reproduction number of HPAI H5N1 between poultry farms at a national level

• However, given the mechanisms of propagation of avian influenza between or

within poultry farms, incorporating explicit spatial features into the mathematical

model may be essential for understanding the dynamics of the Nigerian epidemic

• Our results confirmed the effectiveness of the intervention strategies

• Overall, estimates for R0 are in line with those estimates for the HPAI H5N1

outbreaks in Romania and an outbreak of H7N3 in British Columbia, Canada

• If spatial data related to the distribution of future outbreaks of HPAI H5N1 in

Nigeria were to become available through improved surveillance, it could be

incorporated into mathematical models to more accurately estimate key

epidemiological parameters at both the local and national level, thus improving

our ability to assess intervention strategies, and to predict and prevent future

outbreaks
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