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INTRODUCTION

• stochastic models

– the variables considered in the model are ran-
dom and with a probability distribution

– the distribution and model depend on some
parameters

• Markov chain models (SIR)

– model de evolution of the epidemics (number
of Susceptible, Infected and Recovered indi-
viduals)

– configuration of the population depends on pre-
sent state only (given present the past and fu-
ture history are independent)

– also depend on some parameters (model as-
sumed)



• Bayesian formulation and estimation

– the parameters of the model are also consid-
ered random quantities with a probability dis-
tribution (density)

– estimate the parameters using the so-called
posterior distribution of the parameters

– based on the relation among the posterior and
prior distributions and the likelihood of the model,
e.g.,

∗ θ: vector of parameters of the model

∗ Y: observed data

∗ P (θ |Y) ∝ L(Y | θ)P (θ)



• Markov chain Monte Carlo methods (MCMC me-
thods)

– posterior distribution does not have closed form

– dimension of the vector of parameters is very
large

– use MCMC algorithms and the Law of Large
Number

∫
f(x) g(x) dx ∼

1

M

M∑
i=1

f(Xi)

– other quantities may also be estimated

∗ density distribution

∗ variance and standard deviation



– MCMC algorithms

∗ π(·): target distribution

π(x) =
h(x)

c

∗ construct a Markov chain with π(·) as its
stationary distribution

∗ allow the chain run for a suitable period and
from that moment on the values simulated
are drawn approximately from π(·)



– Metropolis-Hastings algorithm

∗ Xn = x then generate a value y using a
transition probability Pxy

∗ calculate

α(x, y) = min

{
1,
π(y)Pyx
π(x)Pxy

}

∗ with probability α(x, y) accept the new value
for the chain. i.e., Xn+1 = y, otherwise no
change occurs, i.e., Xn+1 = x



– Gibbs sampling algorithm

∗ P (x1, x2, . . . , xd)

∗ P (x′i |x
′
1, x
′
2, . . . , x

′
i−1, xi+1, xd): easy to

simulate value from it

∗ successively simulate the corresponding va-
lues

∗ Markov chain which under appropriate con-
ditions is ergodic



EXAMPLE

• applied to influenza epidemics (theoretical part) -
Cauchemez et al., 2004

• Bayesian approach

• parameters of the models are estimated using Mar-
kov chain Monte Carlo methods

– Metropolis-Hastings

• data from 334 households during winter 1999-
2000

• absence/presence of influenza reported daily for
15 days



MATHEMATICAL DESCRIPTION OF THE PROBLEM

• k: number of households

• N(k): size of the kth household

• N(f): number of families

• i ∈ {1,2, . . . , N(k)}: individual in family k

• j ∈ {0,1,2, . . . ,14}: day at which individuals
are observed

•

Y
(k)
ij =

{
1, clinical influenza was observed
0, otherwise



• I(k): individuals report at least one day with cli-
nical influenza in family k

• S(k): remaining members of the k family

• Z(k)
i : first day of influenza for individual i ∈ I(k)

• ν(k)i : start of infectious period for individual i in
family k

• ψ(k)
i : end of infectious period for individual i in

family k

• ν = {ν(k)i , i = 1,2, . . . , N(k), k = 1,2, . . . , N(f)}

• ψ = {ψ(k)
i , i = 1,2, . . . , N(k), k = 1,2, . . . , N(f)}



• I: set of individuals in the sample such that the
starts of its infectious period fell between 1 and 3
days

• transmission level

– s: susceptible individual just before time t

– αs: instantaneous risk of infection from the
community (depends on characteristics of in-
dividuals s)

– εs: susceptibility to infection of individual s

– βi: ability of infective individual i to infect oth-
ers

– n: size of a given household where individual
s belongs to



• contribution of infective individual i in a household
of size n

– βi/n

– βi/n
η

where η is a parameter that also needs to be es-
timated

• I(k)(t) = {i ∈ I(k) : ν(k)i < t ≤ ψ
(k)
i }: group

of infective just before time t

• Y (k) = {Y (k)
ij , i ∈ {1,2, . . . , N(k)},

j ∈ {0,1,2, . . . ,14}}: all observations in family
k

• Y = {Y (k), k = 1,2, . . . , N(f)}: all observa-
tions



• λs(t): instantaneous risk of infection at time t for
the individual s

λs(t) = αs+ εs
∑

i∈I(t)

βi
n

BAYESIAN FORMULATION

• θ vector of parameter

• P (θ, ν, ψ |Y ) ∝ L(Y | ν, ψ)P (ν, ψ | θ)P (θ)



• Likelihood function of observed data

– L(Y | ν, ψ) =
∏N(f)

i=1 P (Y (k) | ν(k), ψ(k))

– incubation period: 1 – 3 days (augmented data
were compatible with observations)

–
∏
i∈I I(Zi − 3 < νi < Zi and νi < ψi)



• Likelihood for augmented data

– P (ν, ψ | θ) =
∏N(f)

i=1 P (ν(k)ψ(k) | θ)

– ψi − νi
D
= Gamma distribution with µi and

standard deviation σi and density dµi,σi

– condition on ν′

P (ν, ψ | θ) =

∏
i∈I

dµi,σi(ψi − νi)


 ∏
i∈I−{1}

λi(νi)e
∫ νi
ν′ λi(t) dt


 ∏
s∈S

e
∫ 15
ν′ λs(t) dt





where

∗ ν′: start of the infectious period for the first
infected individual (in the entire community)

∗ I−{1}: infective individuals without the first
infective

∗ 15: number of observed days

• vector of parameters

– P (θ): prior distribution of the vector of param-
eters

– ε = (εC, εA)

– α = (αC, αA)

– θ = (µ, σ, α, β, ε, η)



• CPI(i): probability for individual i to be infected
from the community in the 15-day follow-up (Com-
munity Probability of Infection)

CPI(i) = 1− e−15αi

• SAR(i→ s): (Secondary Attack Rate)

P(infective i infects susceptible s in household of
size n)

SAR(i→ s) = 1−
∫ ∞
0

e−
εs βi
n t dµi,σi(t) dt



SIMULATION

• prior distributions used

– µ, σ D= Gamma, mean 3 and SD 2

– α, β D= Exp(0.001)

– η
D
= U [−3,3]

– log(εC)
D
= Logistic with scale parameter 1

– adults were reference category→ εA = 1



• initial values

– ν
(k)
i

D
= U [Z(k)

i − 3, Z(k)
i ]

– ψ
(k)
i − ν(k)i

D
= U [0,20]

– α, β D= U [0,1]

– µ, σ D= U [0,10]

– εC , η D= respective prior distributions



COMMENTS

• several hypothesis were tested by the authors

• selection of the best hypothesis for the model fit-
ting the data was made using Bayes Factor

• substantial evidence that children are more sus-
ceptible than adults εC > 1

• substantial evidence that community risk is larger
for children than adults αC > αA

• poor evidence against the hypothesis that on av-
erage children are infectious for a longer period
than adults µC > µA



• strong evidence favoring that household risk is
larger with infectious child than with infectious adult
βC > βA

• decisive evidence that SAR is larger with infec-
tious child that with infectious adult , i.e., for n ∈
{2,3,4,5}, SARC(n) > SARA(n)

• modifications and further generalisations may be
considered

• simplified by using the software Winbugs (Spiegel-
halter et al., 1999)

• http://www.mrc bsu.cam.ac.uk/bug/winbugs/


