Continuous Time Evolution of Disease Spread on a Network

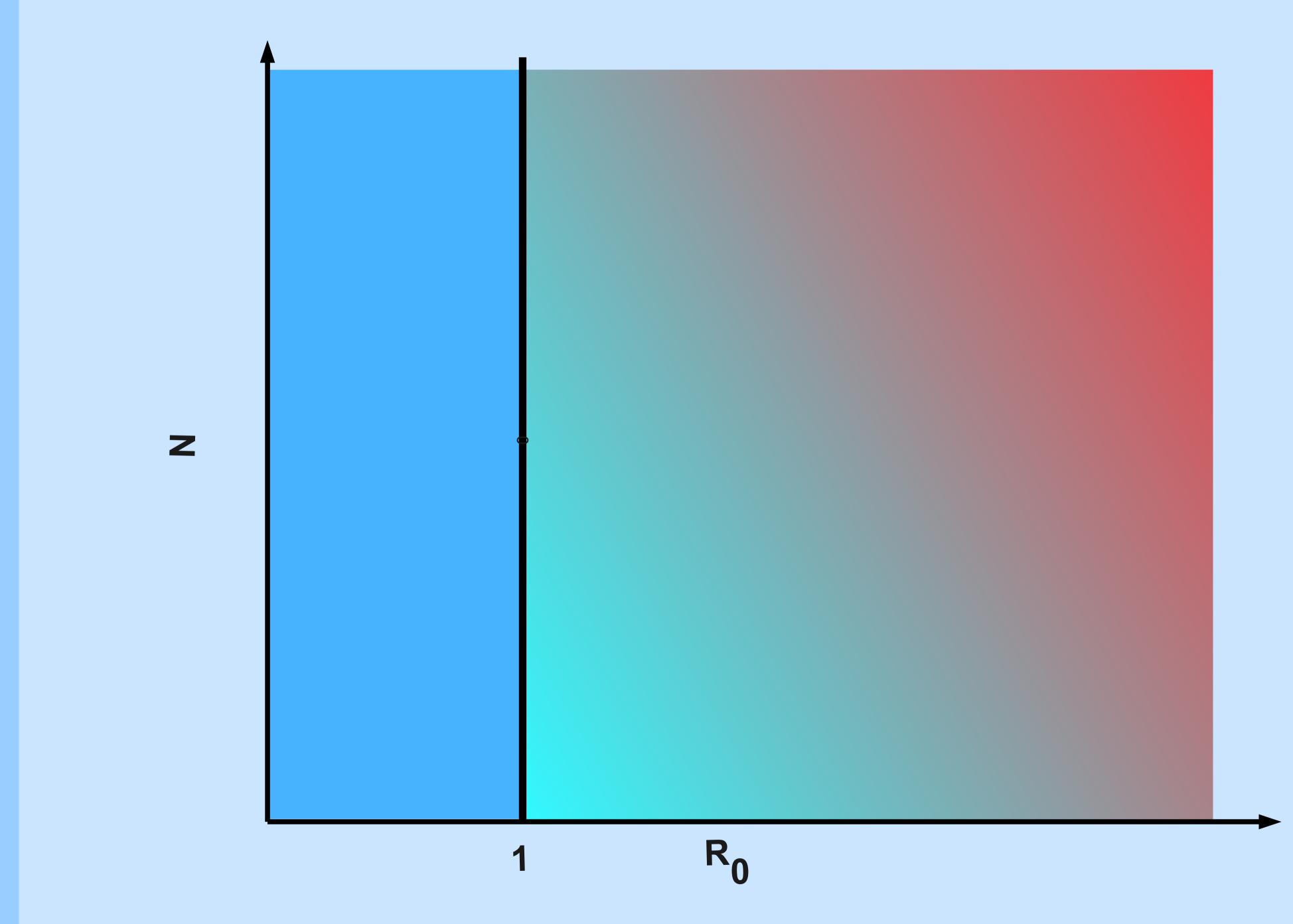
BC Centre for Disease Control An agency of the Provincial Health Services Authority

University of British Columbia Center for Disease Control Division of Math. Modeling

B. Davoudi and B. Pourbohloul

General features of disease spread Network basis Individual disease states Disease transmission dynamics Poisson/binomial network General network Extensions Conclusion

Outline



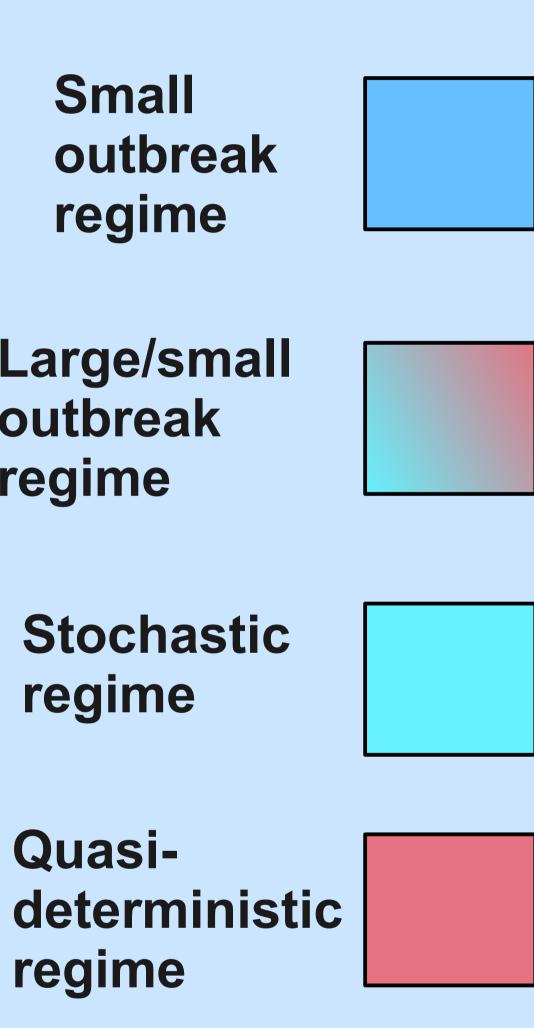
General features of disease Spread

Small regime

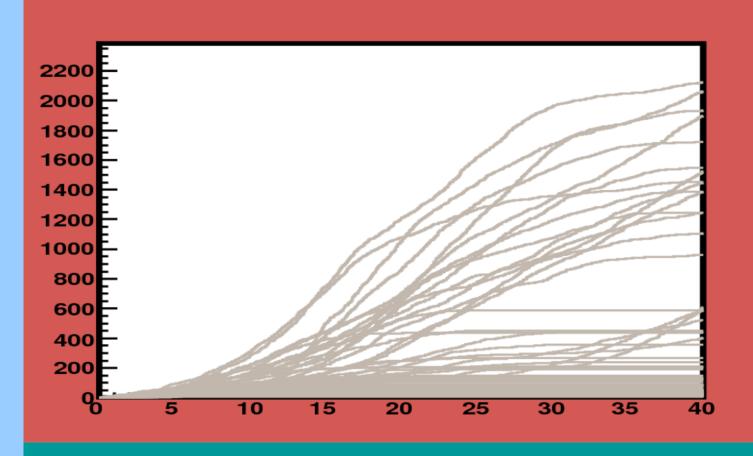
Large/small outbreak regime

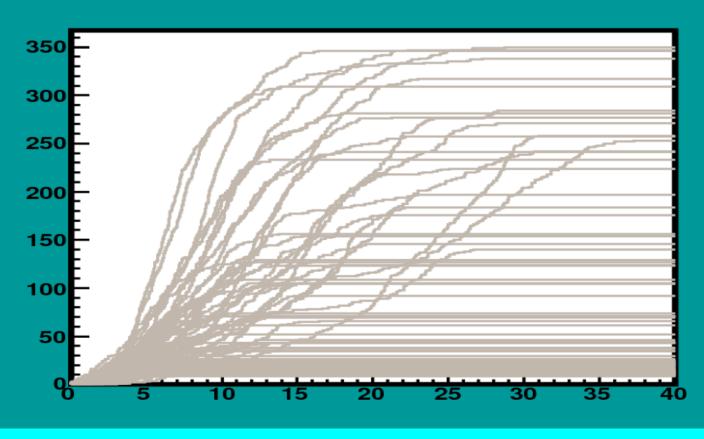
regime

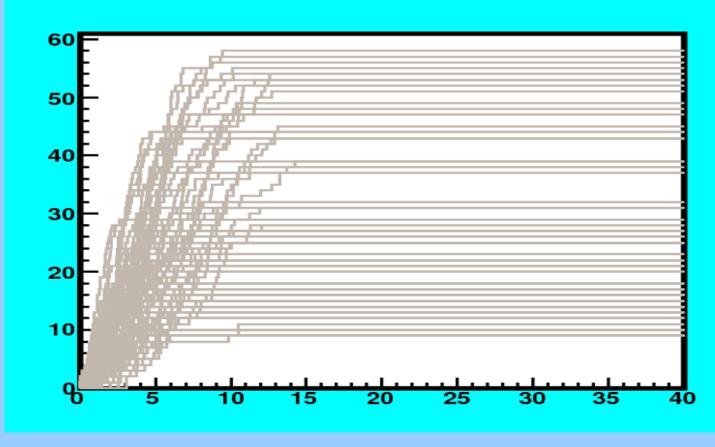
Quasiregime

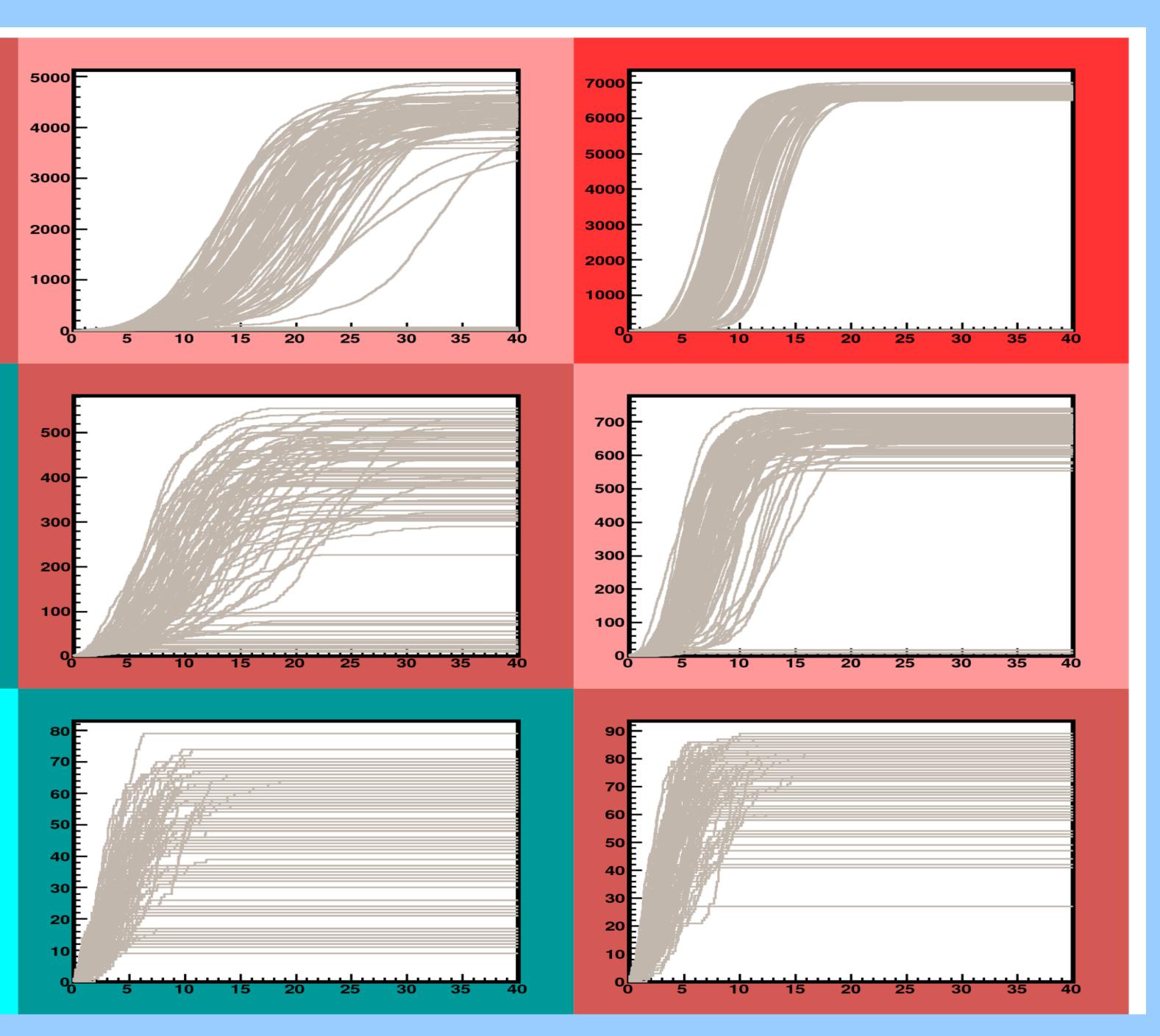


General features of disease spread









Network basis

•Degree distribution P_k gives the probability that a randomly chosen vertex has degree k•Distribution $q_k = kp_k/z$ gives the probability that a randomly chosen stub belongs to a vertex of degree k, where $z = \langle k \rangle_{p_k}$ •Excess degree $Z_x = \langle k-1 \rangle_{q_k}$ gives the average degree of a vertex, chosen by targeting one of its stub, excluding the targeted stub

•Each individual can be susceptible (S), infected (I), or removed (R). • $\lambda_i(\tau)$ and $\lambda_r(\tau)$ are rates for (S ---- I) and $(I \rightarrow R)$ • $\Psi(\tau) = \exp(-\int_0^{\tau} \lambda_r(\tau') d\tau')$ gives the probability of being infectious up to period τ • $\psi(\tau) = \frac{-d \Psi(\tau)}{d \tau}$ gives the probability density of being removed at time

Disease states

Disease states

•Transmissibility $T(\tau) = 1 - \exp(-\int_0^{\tau} \lambda_i(\tau') d\tau')$ gives the probability that disease is transmitted up to time T • $T(\infty)$ gives the probability of disease transmission after infectious individual is recovered • $T = \int_{0}^{\infty} \psi(\tau) T(\tau) d\tau$ expected transmissibility gives the probability of disease transmission if we have no knowledge of removal time

number of removed individuals susceptible individuals

• J(t) is rate of new infection, J(t)dt gives the number of new infections between *t* and *t*+*dt* • $N_i(t) = \int_0^t J(t-\tau) \Psi(\tau) d\tau$ is the total number of infectious individuals • $N_r(t) = \int_0^t J(t-\tau)(1-\Psi(\tau)) d\tau$ is the total • $N_{s}(t) = N - N_{r}(t) - N_{i}(t)$ is the total number of

• $R_0 = Z_x T$ is the basic reproduction number and it gives the expected number of infections a typical infected individual can cause • We rewrite $R_0 = Z_x \int_0^\infty \psi(\tau) T$

 The rate of new infection caused with an infectious individual, by age of infection τ is then given by $J(\tau) = Z_x \Psi(\tau) \frac{dT(\tau)}{d\tau}$

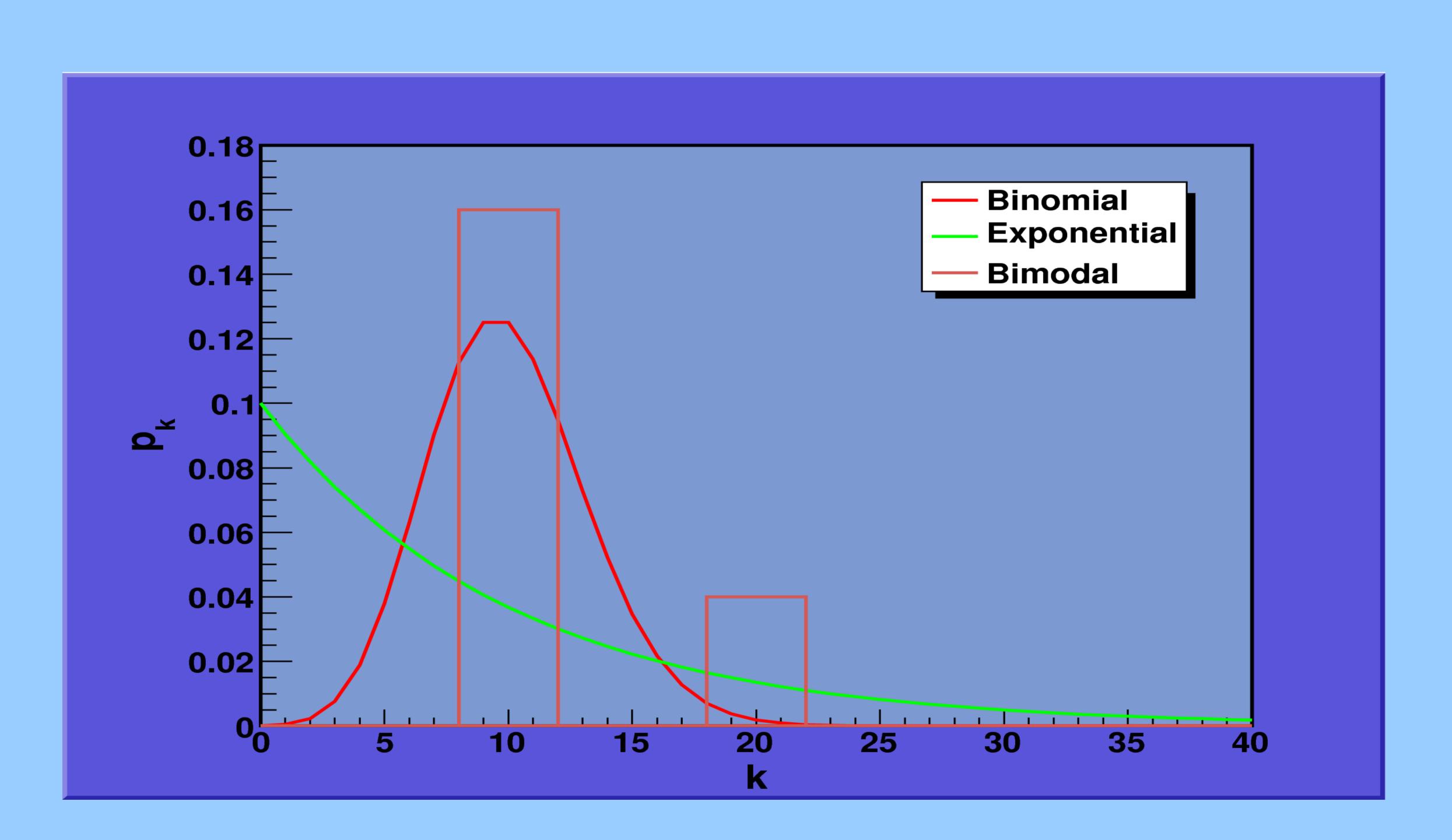
$$Y(\tau) d\tau = Z_x \int_0^\infty \Psi(\tau) \frac{dT}{d}$$

dT

degree and the system is infinite) $J(t) = \int_0^t Z_x \Psi(\tau) \frac{dT(\tau)}{d\tau} J(t-\tau) d\tau$ distribution)

- The renewal equation takes the following form (when all individuals have the same
- The renewal equation takes the following final form (for finite system and arbitrary degree
 - $J(t) = \int_0^t J(t-\tau) \Psi(\tau) \frac{dT(\tau)}{d\tau} Z_x(\tau, t) d\tau$

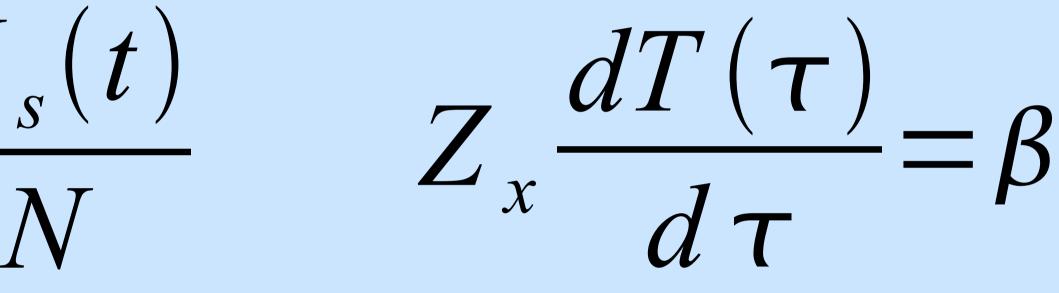
Networks types

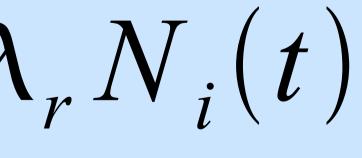


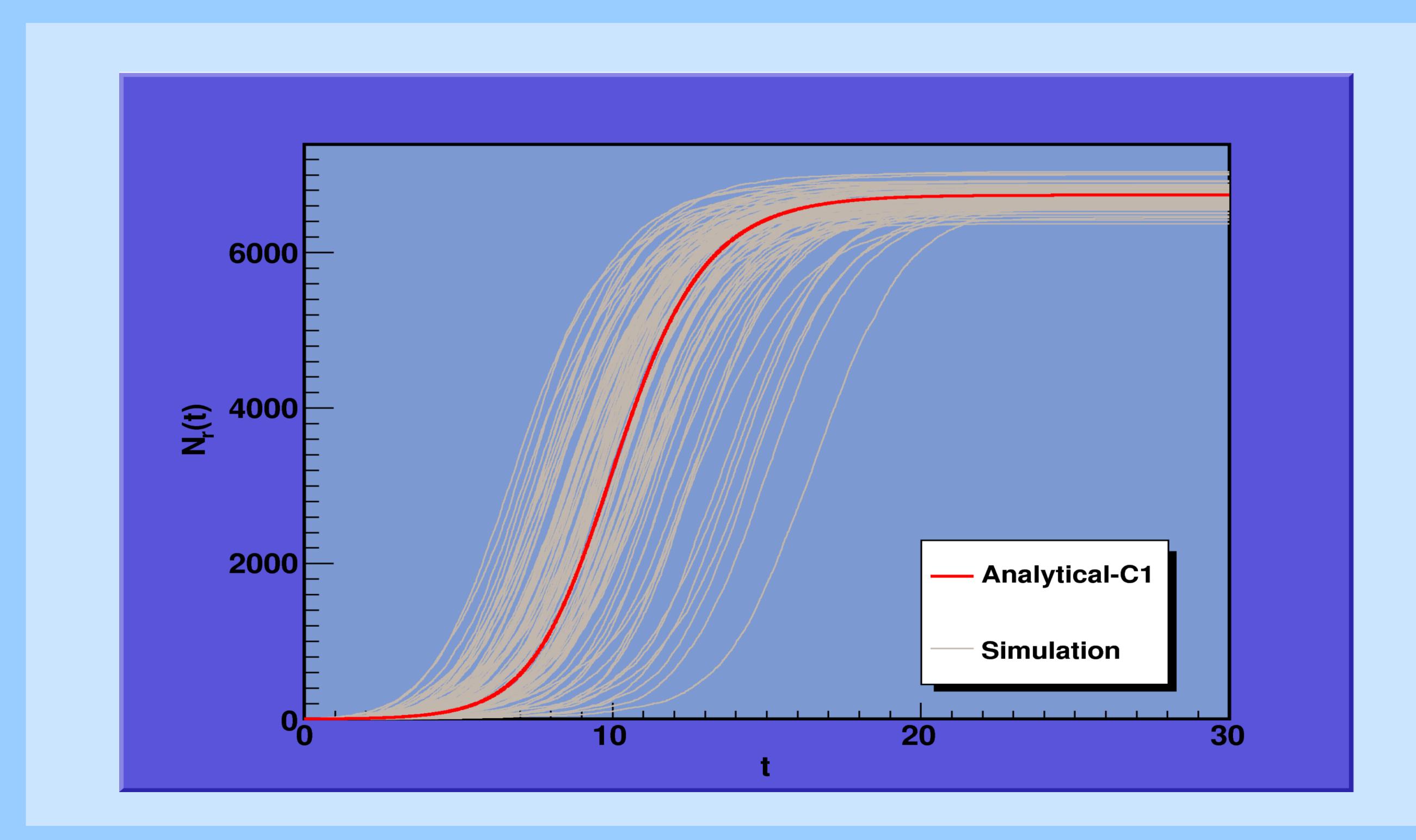
 $Z_{x}(\tau,t) = Z_{x} \frac{N_{s}(t)}{N} \qquad Z_{x} \frac{dT(\tau)}{d\tau} = \beta$ $J(t) = \beta \frac{N_s(t)}{N} \int_0^t J(t-\tau) \Psi(\tau) d\tau$ $\frac{dN_i(t)}{dt} = J(t) - \lambda_r N_i(t) = \beta \frac{N_s(t)}{N} N_i(t) - \lambda_r N_i(t)$

J.Miller, B. Davoudi, R. Meza, A. Slim, B. Pourbohloul, Journal of theoretical biology, 262, 107 (2009)

Example 1:Poisson/binomial network







Example 1:Poisson/binomial network

individuals change over time?

 What fraction of stubs of infected individuals is pointing to susceptible individuals?

How does the excess degree of infected

 The collection process: 1)We randomly choose individuals by targeting random stubs and then assign the individuals to collected group 2)We update the degree distributions of collected and uncollected individuals.

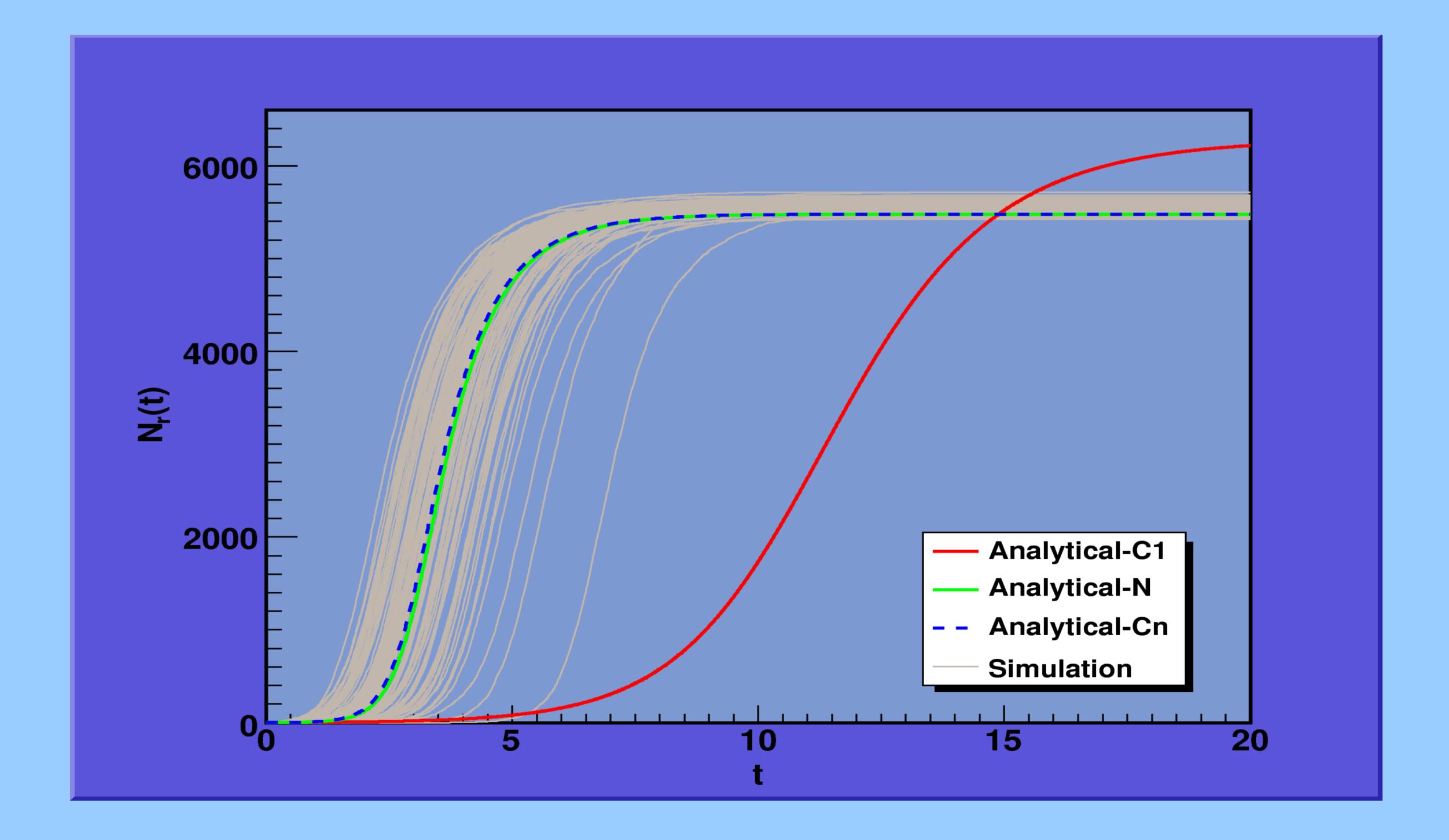
n $\tilde{p}_k(n)$ $\tilde{z}(n)$ $\frac{dp_k(n)}{dn} = \frac{p_k(n)}{N-n} \left(1 - \frac{k}{z(n)} \right) \qquad \frac{d\tilde{p}_k(n)}{dn} = \frac{p_k(n)}{n} \left(\frac{k}{z(n)} - 1 \right)$

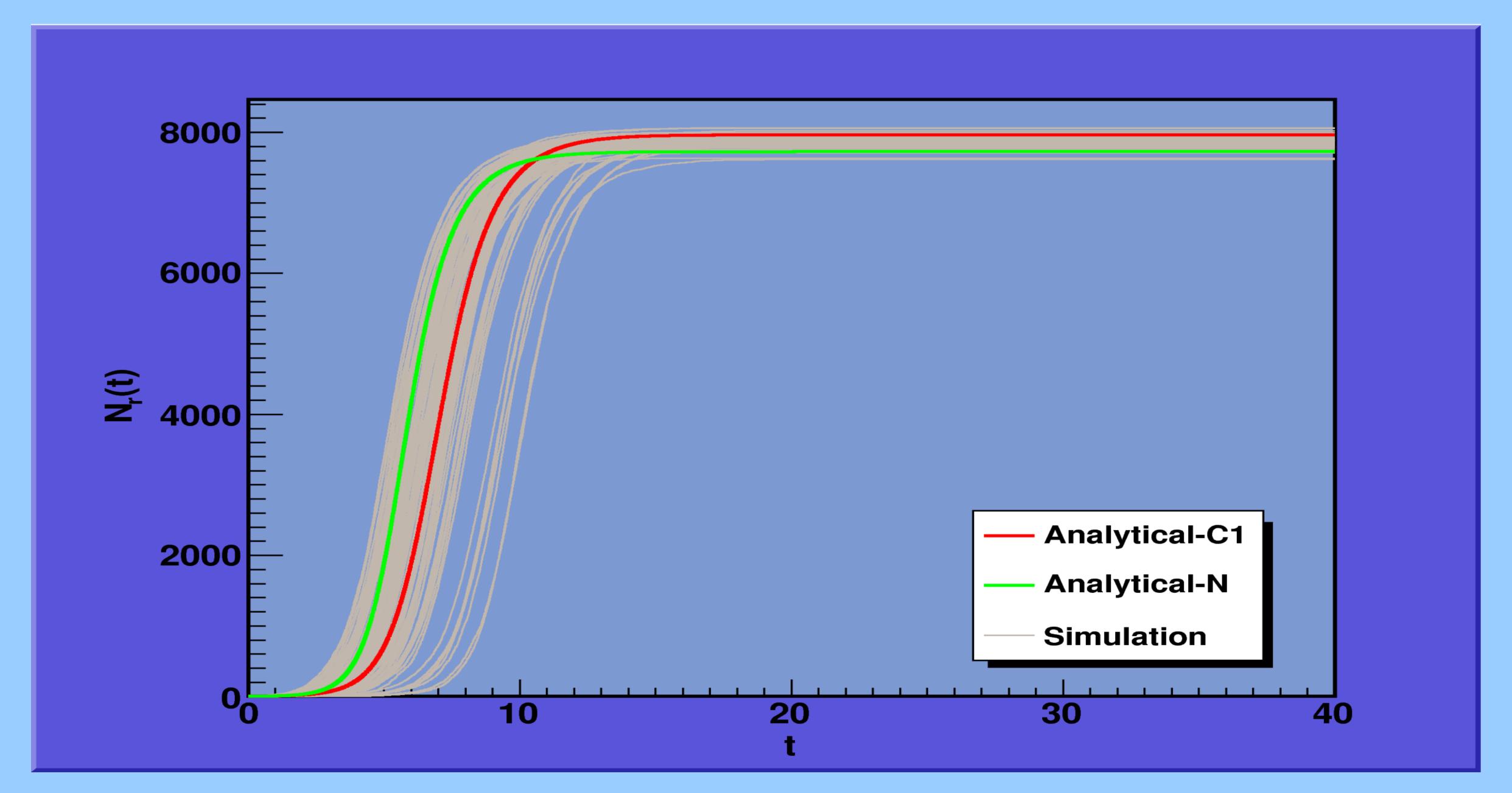
N-n

$\sum_{k} p_k(n)$ $q_k(n) = \frac{kp_k(n)}{Z(n)}$

 The average degree of susceptible individuals $z_s(t) = z(N_i(t) + N_r(t))$ The average degree of infectious individuals that got infected during time t and t + dt $z_{j}(t) = \tilde{z}(N_{i}(t) + N_{r}(t)) + [N_{i}(t) + N_{r}(t)] \left[\frac{d \tilde{z}(n)}{dn}\right]_{n = N_{i}(t) + N_{r}(t)}$ • Then $Z_x(\tau, t) = z_j(t - \tau) \frac{N_s(t) z_s(t)}{N_z}$

Example 1:exponential network





Example 1:bimodal network

 Multi-types network Open network Dynamic network SIRS system (etc)

Extensions

•We obtain the renewal equation •We obtain a good approximation for the kernel of the renewal equation We test our results against simulation We discuss the possible extensions

Conclusion

B. Pourbohloul K. English E. MacHattie F. Moser W. Lock J. Lu

Thank you

Michael Smith Foundation for **Health Research**

Ministry of Health

