```
Goal
```

Our results
The Ward equation The twisted hierarchy

References

The Riemann-Hilbert approach to higher dimensional integrable systems

Derchyi Wu
Institute of Mathematics
Academia Sinica
Taiwan

Cuernavaca, 2010

Outline

Riemann-Hilbert
Approach
Derchyi Wu

Background

Riemann-Hilbert
problem
Integrable systems Goal

Our results
The Ward equation
The twisted
hierarchy
References
(1) Background

- The Riemann-Hilbert problem
- Integrable systems
- Goal

2) Our results

- The Ward equation
- The twisted hierarchy

MATH, Academia Sinica, R.O.C

Outline

Riemann-Hilbert
Approach
Derchyi Wu
(1) Background

- The Riemann-Hilbert problem
- Integrable systems
- Goal

Our results

- The Ward equation
- The twisted hierarchy

MATH, Academia Sinica, R.O.C

The Riemann Hilbert problem

Riemann-Hilbert Approach

Derchyi Wu

- 1.1 [Riemann, 1851]

Let $\left\{M_{t}\right\}_{t \in \mathbb{S}^{1}}$ be a family of curves in \mathbb{C}. Find all functions ω holomorphic in the open unit disk \mathbb{D} and

$$
\begin{equation*}
\omega(t) \in M_{t}, \quad t \in \mathbb{S}^{1} \tag{1}
\end{equation*}
$$

- 1.2 [Hilbert, 1904]

Write $\omega(t)=u(t)+i v(t)$, and (1) as

$$
\begin{equation*}
F(t, u(t), v(t))=0 \tag{2}
\end{equation*}
$$

for a given $F: \mathbb{S}^{1} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$. Differentiating the equation w.r.t. t, we obtain

$$
a(t) \tilde{u}(t)+\beta(t) \tilde{v}(t)=\gamma(t), \quad \forall t \in \mathbb{S}^{1}
$$

or

$$
\begin{equation*}
\Phi^{+}(t)-g(t) \Phi^{-}(t)=f(t), \quad t \in \mathbb{S}^{1} \tag{3}
\end{equation*}
$$

for given functions $g(t)$ and $f(t)$.

The Riemann Hilbert problem

Riemann-Hilbert
Approach
Derchyi Wu

- 1.3 Theorem (Scalar RH problem) [Plemelj, 1908], [Gakhov, 1938]
The solution of the scalar homogeneous RH problem (3) with Holder continuous g is given by

$$
\begin{gathered}
\Phi(z)=X(z) P_{m+\kappa}, \\
X(z)= \begin{cases}e^{\ulcorner(z)}, & |z|<1 \\
z^{-\kappa} e^{\ulcorner(z)}, & |z|>1\end{cases} \\
\Gamma(z)=\frac{1}{2 \pi i} \int_{\mathbb{S}^{1}} \frac{\log \left(\tau^{-\kappa} g(\tau)\right)}{\tau-z} d \tau,
\end{gathered}
$$

where $P_{m+\kappa}$ is a polynomial of degree $m+\kappa$, and $\kappa=\operatorname{index} g(t)$.

The Riemann Hilbert problem

Riemann-Hilbert
Approach
Derchyi Wu

- 1.5 Singular integral [Carleman, 1922] Define the Cauchy integral

$$
\mathcal{C} f(z)=\frac{1}{2 \pi i} \int_{\mathbb{R}} \frac{f(t)}{t-z} d t .
$$

Suppose the function $f \in H^{1}(\mathbb{R})$. Then

- $\mathcal{C} f \in H^{1}(\mathbb{R}), \mathcal{C} f(z)$ is holomorphic and bounded in $\mathbb{C} \backslash \mathbb{R}$;
- Cf is uniformly Holder continuous of order $1 / 2$ on $\mathbb{C} \backslash \mathbb{R}$;
- $(\mathcal{C} f)^{ \pm}(t)$ exists pointwise for $t \in \mathbb{R}$ and $\mathcal{C f} \rightarrow 0$ uniformly as $z \rightarrow \infty$.

The Riemann Hilbert problem

Riemann-Hilbert
Approach
Derchyi Wu

- 1.5 Small data matrix RH problem [Beals-Coifman, 1984] Suppose g satisfies

$$
|g-1|_{H^{1}(\mathbb{R}, d t)} \ll 1
$$

Then there exist $\Phi \in L^{\infty}(\mathbb{R}, d t)+H^{1}(\mathbb{R}, d t)$ such that

$$
\begin{aligned}
\Phi^{+}(t)=g(t) \Phi^{-}(t), & t \in \mathbb{R}, \\
\Phi(\lambda) \rightarrow 1, & z \rightarrow \infty \\
\Phi(z) \text { is holomorphic } & z \in \mathbb{C} / \mathbb{R}
\end{aligned}
$$

bounded and absolutely continuous in z.

The Riemann Hilbert problem

- 1.6 Large data matrix RH problem [Beals-Coifman, 1984] Suppose
-

$$
g(t)=(1+U(t)) D(t)(1+L(t)), \quad \forall t \in \mathbb{R}
$$

where U upper triangular, D diagonal, L lower triangular and U, $D-1, L \in H^{1}(\mathbb{R}, d t)$,

- The homogeneous RH problem (w. 0 at infinity) has only the trivial solution.
Then there exist $\Phi \in L^{\infty}(\mathbb{R}, d t)+H^{1}(\mathbb{R}, d t)$ such that

$$
\begin{aligned}
\Phi^{+}(t)=g(t) \Phi^{-}(t), & t \in \mathbb{R} \\
\Phi(\lambda) \rightarrow 1, & z \rightarrow \infty \\
\Phi(z) \text { is holomorphic } & z \in \mathbb{C} / \mathbb{R}
\end{aligned}
$$

bounded and absolutely continuous in λ.

Outline

Riemann-Hilbert Approach

Derchyi Wu

Riemann-Hilbert
problem
Integrable systems Goal

Our results
The Ward equation
The twisted hierarchy

References
(1) Background

- The Riemann-Hilbert problem
- Integrable systems
- Goal

Our results

- The Ward equation
- The twisted hierarchy

References

MATH, Academia Sinica, R.O.C

Applications to integrable systems

- 2.1 Integrable systems [Kruskal, Zabusky, Greene, Gardner, Miura, 1967], [Lax, 1968], [Beals, Coifman, 1985] An integrable system of $q(\mathbf{x}, t)$ is a nonlinear evolution equation which can be written as

$$
\left[L_{\lambda}, M_{\lambda}\right]=0
$$

and the initial value problem of the integrable system can be solved by using the inverse scattering theory of

$$
L_{\lambda} \Psi(\mathbf{x}, t, \lambda)=0 .
$$

That is,

$$
\begin{array}{rllll}
q(\cdot, 0) & \longleftrightarrow L_{\lambda}(0) & \longrightarrow & S\left[L_{\lambda}(0)\right] \\
\downarrow \\
\downarrow(\cdot, t) & \longleftrightarrow & L_{\lambda}(t) & \longleftrightarrow & S\left[L_{\lambda}(t)\right]
\end{array}
$$

Applications to integrable systems

- 2.2 Direct problem

Given $q(\mathbf{x}, t)$, by

$$
\begin{equation*}
\left[\bar{\partial}_{\lambda}, L_{\lambda}\right]=0, \tag{4}
\end{equation*}
$$

the eigenfunction $\Psi(\mathbf{x}, t, \lambda)$ constructed is holomorphic outside contours $\Sigma \subset \mathbb{C}$. Thus Ψ, or q, can be determined by $\bar{\partial}_{\lambda} \Psi$ which is supported on Σ.

Moreover, (4) implies $L_{\lambda}\left(\bar{\partial}_{\lambda} \Psi\right)=0$, hence $\bar{\partial}_{\lambda} \psi$ can be written as a multiple or an integral operator of $\Psi(\mathbf{x}, t, \lambda)$, where the multiple or the kernel is furthermore characterized by the algebraic properties of L_{λ}. Therefore, we choose the scattering data S_{λ} to be the essential part of the multiple or the kernel.

Applications to integrable systems

- 2.3 Inverse problem

Since the scattering data characterizes the $\bar{\partial}$-data, the eigenfunction Ψ and its asymptotic properties can be found by solving a RH problem.

To find the potential $q(\mathbf{x}, t)$, note the property (4) ($\left[\bar{\partial}_{\lambda}, L_{\lambda}\right]=0$) also implies $\bar{\partial}_{\lambda}\left(L_{\lambda} \Psi\right)=0$. Together with the algebraic properties of S_{λ}, we have
ψ and $L_{\lambda} \psi$ satisfy the same $R H$ problem.
By investigating the λ-asymptotic property of $L_{\lambda} \Psi$, one can determine the potential $q(\mathbf{x}, t)$.

Outline

Riemann-Hilbert
Approach
Derchyi Wu

Background

The
Riemann-Hilbert
problem
Integrable systems
Goal
Our results
The Ward equation
The twisted
hierarchy
References
(1) Background

- The Riemann-Hilbert problem
- Integrable systems
- Goal

Our results

- The Ward equation
- The twisted hierarchy

References

Goal

We illustrate the ideas in solving the following higher dimensional integrable systems via the RH approach.

- The direct and inverse scattering problem of the Ward equation with large initial data and purely continuous scattering data;
- The inverse scattering problem of a twisted hierarchy associated with the generalized sine-Gordon equation.

Outline

Riemann-Hilbert Approach

Derchyi Wu

Background

- The Riemann-Hilbert problem
- Integrable systems
- Goal
(2) Our results
- The Ward equation
- The twisted hierarchy
(3) References

The Ward equation

- 4.1 The Ward equation

Taking a dimension reduction and a gauge fixing of the self-dual Yang-Mills equation in the space-time with signature $(2,2)$, one derives a $2+1$ dimensional $S U(N)$ chiral field equation with an additional torsion term.

$$
\begin{aligned}
& -\left(J^{-1} J_{t}\right)_{t}+\left(J^{-1} J_{x}\right)_{x}+\left(J^{-1} J_{y}\right)_{y}+\nu_{0}\left\{\left(J^{-1} J_{y}\right)_{x}-\left(J^{-1} J_{x}\right)_{y}\right\} \\
& +\nu_{1}\left\{\left(J^{-1} J_{t}\right)_{y}-\left(J^{-1} J_{y}\right)_{t}\right\}+\nu_{2}\left\{\left(J^{-1} J_{x}\right)_{t}-\left(J^{-1} J_{t}\right)_{x}\right\}=0
\end{aligned}
$$

Where J lies in $\operatorname{SU}(N)$ and $\nu=\left(\nu_{0}, \nu_{1}, \nu_{2}\right)$ is a constant unit vector. Letting $\nu=(1,0,0)$ (time-like) and $\nu=(0,1,0)$ (space-like), we obtain two integrable systems, the 3-dimensional relativistic-invariant system and the Ward equation.

The Ward equation

The construction of simple solitons, and the study of their scattering properties was done by [Manakov, Zakharov, 81] for the 3-dimensional relativistic-invariant system and by many mathematicians for the Ward equation, see [Dai, Terng, 07] for references.

If the initial potential is sufficiently small, [Manakov, Zakharov, 81], [Villarroel, 89] studied the inverse scattering problem and solve the Cauchy problem of the 3-dimensional relativistic-invariant system and [Villarroel, 90], [Fokas, Ioannidou, 01], [Dai, Terng, Uhlenbeck, 06] of the Ward equation.

The Ward equation

- 4.2 Our results

We solve the Cauchy problem of the Ward equation with large (and purely continuous) data by IVS in [Wu,08] and with mixed scattering data via a theory of Backlund transformation in [Wu, 09].
The Lax pair is derived as follows

$$
\left(J^{-1} J_{t}\right)_{t}-\left(J^{-1} J_{x}\right)_{x}-\left(J^{-1} J_{y}\right)_{y}-\left[J^{-1} J_{t}, J^{-1} J_{y}\right]=0
$$

Then

$$
\begin{gathered}
{\left[\lambda \partial_{x}-\partial_{\xi}-A, \lambda \partial_{\eta}-\partial_{x}-B\right]=0} \\
\xi=-\frac{t+y}{2}, \quad \eta=\frac{t-y}{2} \\
J(x, y, t, 0)=\Psi(x, y, t, 0)^{-1} \\
A=-\frac{\partial \Psi}{\partial \xi} \Psi^{-1}, B=-\frac{\partial \Psi}{\partial x} \Psi^{-1}
\end{gathered}
$$

The Ward equation

Riemann-Hilbert
Approach
Derchyi Wu

- 4.2 Our results(continued) Set

$$
\begin{gathered}
A=-\partial_{x} Q, B=-\partial_{\eta} Q \\
(\eta, x, \xi) \rightarrow(x, y, t),
\end{gathered}
$$

then the Ward equation turns into

$$
\partial_{x} \partial_{t} Q=\partial_{y}^{2} Q+\left[\partial_{y} Q, \partial_{x} Q\right]
$$

with a Lax pair

$$
\begin{aligned}
& \left(\partial_{y}-\lambda \partial_{x}\right) \Psi=\left(\partial_{x} Q\right) \Psi, \\
& \left(\partial_{t}-\lambda \partial_{y}\right) \Psi=\left(\partial_{y} Q\right) \Psi .
\end{aligned}
$$

The Ward equation

Riemann-Hilbert
Approach
Derchyi Wu

- 4.2 Our results(continued)Three important algebraic properties of the Lax operator $L_{\lambda}=\partial_{y}-\lambda \partial_{x}-q$ of the Ward equation,
(1) derivation property;
(2) translating invariant property;
(3) the principal part being equivalent to $\bar{\partial}$,
are used to reformulate the direct problem as a RH problem (hence the large data difficulty is resolved). More precisely,

The Ward equation

Riemann-Hilbert
Approach
Derchyi Wu

- 4.2 Our results(continued)
- Translating invariant property:

$$
\begin{aligned}
& \text { If } \Psi(x, y, \lambda) \text { is an e.f. of } q(x, y) \\
& \text { then } \Psi\left(x, y+y_{0}, \lambda\right) \text { is an e.f. of } q\left(x, y+y_{0}\right)
\end{aligned}
$$

Hence wlog, we can assume

$$
\begin{aligned}
& q=q^{-}+q^{+} \\
& q^{-}=0, \text { for } y \geq 1 \\
& q^{+}=0, \text { for } y \leq-1 \\
& \left|\hat{q}_{x}^{ \pm}(\xi, y)\right|_{L_{1}(d \xi d y)}<\left(\frac{3}{2}\right)^{N}
\end{aligned}
$$

and use an induction scheme to find the eigenfunctin Ψ. Since

The Ward equation

Riemann-Hilbert

- 4.2 Our results(continued)
- Using the derivation property of $\partial_{y}-\lambda \partial_{x}$, any eigenfunction Ψ for q, whenever it exists, must be of the form

$$
\Psi(x, y, \lambda)= \begin{cases}\Psi^{-}(x, y, \lambda) a^{-}(x, y, \lambda), & y \leq 0 \\ \Psi^{+}(x, y, \lambda) a^{+}(x, y, \lambda), & y \geq 0 \\ \left(\partial_{y}-\lambda \partial_{x}\right) a^{ \pm}=0\end{cases}
$$

Here $\left(\partial_{y}-\lambda \partial_{x}-q^{ \pm}\right) \Psi^{ \pm}=0$.

- By a change of variables $x+\lambda y=\tilde{x}+i \tilde{y}=z, \tilde{x}, \tilde{y} \in \mathrm{R}$. The existence of ψ is equivalent to solving the RH problem

$$
\begin{aligned}
& \partial_{\bar{z}} f=0, \text { for } z \in \mathrm{C}^{ \pm} \\
& f^{+}=f^{-}(F-1) \\
& F=\left(\Psi^{+}\right)^{-1} \Psi^{-}
\end{aligned}
$$

Hence the direct, and the inverse problems are reduced to solving two types of RH problem with large data.

The Ward equation

- 4.3 Remarks

- Triangular factorization in the approximation process is necessary to reduce the linear system to be just-determined.
- Need to solve RH problems with data composed of eigenfunctions derived by induction hypothesis.
- Nice asymptote is required to assure the solvability of the system of linear equations at infinity.
- For the direct problem, solvability of the linear system outside a bounded discrete set in $\mathbb{C} \backslash \mathbb{R}$ is assured by the mero. property.
- For the inverse problem, global solvability is assured by applying the reality condition.

Outline

Riemann-Hilbert
Approach
Derchyi Wu

Background

The

Riemann-Hilbert
problem
Integrable systems Goal

Our results The Ward equation The twisted hierarchy

References

Background

- The Riemann-Hilbert problem
- Integrable systems
- Goal
(2) Our results
- The Ward equation
- The twisted hierarchy

The twisted hierarchy

Riemann-Hilbert
Approach
Derchyi Wu

Riemann-Hilbert problem
Integrable systems

- 5.1 The sine-Gordon equation
-

$$
\begin{align*}
& \mathcal{P}=\left\{M \text { surfaces of }-1 \text { curv. in } \mathbb{R}^{3}\right\} \\
& \longleftrightarrow\left\{u: u_{x x}-u_{t t}=\sin u\right\} \tag{SGE}
\end{align*}
$$

- [Backlund, 1875]
- If $M \equiv \bar{M}$, then $M, \bar{M} \in \mathcal{P}$.
- If $M \in \mathcal{P}$, then $\exists M_{\lambda} \in \mathcal{P}$, s.t. $M \equiv M_{\lambda}$.
- [Ablowitz, Kaup, Newell, Segur, 73] Lax pair \& IVS of (SGE)

The twisted hierarchy

Riemann-Hilbert
Approach
Derchyi Wu

- 5.2 The generalized sine-Gordon equation
- [Chern, Terng, Tenenblat, 80]
-

$$
\begin{aligned}
& \mathcal{P}=\left\{M^{n} \text { submfld of }-1 \text { sec. curv. in } \mathbb{R}^{2 n-1}\right\} \\
& \longleftrightarrow\{\text { solutions of }(G S G E)\}
\end{aligned}
$$

- (1) If $M \equiv \bar{M}$, then $M, \bar{M} \in \mathcal{P}$.
(2) If $M \in \mathcal{P}$, then $\exists M_{\lambda} \in \mathcal{P}$, s.t. $M \equiv M_{\lambda}$.
- $I=\sum_{i=1}^{n} \alpha_{1 i}^{2} d x_{i}^{2}, I I=\sum_{i=2, j=1}^{n} \alpha_{i j} \alpha_{1 j} d x_{j}^{2} e_{n+i-1}$.

$$
\alpha \in O(n)
$$

$$
\partial_{x_{j}} \alpha_{k i}=\alpha_{k j} h_{j i}, h_{i i}=0, \quad i \neq j,
$$

$$
\partial_{x_{i}} h_{i j}+\partial_{x_{j}} h_{j i}+\sum_{k \neq i, j} h_{k i} h_{k j}=\alpha_{1 i} \alpha_{1 j}, \quad i \neq j
$$

$$
\partial_{x_{k}} h_{i j}=h_{i k} h_{k j}, \quad \quad i, j, k \text { distinct }
$$

The twisted hierarchy

- 5.2 The generalized sine-Gordon equation (continued)
- [Ablowitz, Beals, Tenenblat,86]

Lax pair \& IVS of (GSGE)

- [Terng, 10]

Twisted U/K-hierarchies,
Twisted $O(n, n) / O(n) \times O(n)$-system (GSGE),
Local solutions via a loop group approach

- 5.3 The generating equation [Campos, Tenenblat, 94]

$$
\begin{aligned}
& \mathcal{P}=\left\{\text { Riem. } n \text {-submfld of }-1 \text { sec. curv. in } \mathbb{R}^{2 n-2,1}\right\} \\
& \leftrightarrow\{\text { solutions of }(\mathrm{GE})\} \\
& \alpha \in O(n-1,1) \\
& \partial_{x_{j}} \alpha_{k i}=\alpha_{k j} h_{j i}, h_{i j}=0, i \neq j \\
& \partial_{x_{i}} h_{i j}+\partial_{x_{j}} h_{j i}+\sum_{k \neq i, j} h_{k i} h_{k j}=\alpha_{1 i} \alpha_{1 j}, i \neq j \\
& \partial_{x_{k}} h_{i j}=h_{i k} h_{k j}, i, j, k \text { distinct }
\end{aligned}
$$

The twisted hierarchy

Riemann-Hilbert
Approach
Derchyi Wu

- 5.3 The generating equation (continued) They constructed the Backlund transform and linearized it but could not solve the direct and inverse scattering problem.
- 5.4 Twisted $\frac{O(J, J)}{O(J \times O(J)}$-hierarchies [Ma, Wu]

$$
\begin{aligned}
& \text { Let } J=I_{n-q, q}=\operatorname{diag}(\overbrace{1, \cdots, 1}^{n-q \text { times }}, \overbrace{-1, \ldots,-1}^{q \text { times }}), \tilde{J}=\left(\begin{array}{cc}
J & 0 \\
0 & -J
\end{array}\right) \text {, } \\
& \text { and }
\end{aligned}
$$

$$
\begin{aligned}
O(J, J) & =\left\{x \in G L_{2 n}(\mathbb{R}) \mid \tilde{J} x^{t} \tilde{J} x=1\right\} \\
L(O(J, J)) & =\left\{f: \mathbb{S}^{1 / \epsilon} \rightarrow G L_{2 n}(\mathbb{R}), \tilde{J} f(\bar{\lambda})^{*} \tilde{J} f(\lambda)=1\right\}
\end{aligned}
$$

The twisted hierarchy

Riemann-Hilbert Approach

Derchyi Wu

Background The
Riemann-Hilbert problem
Integrable systems Goal

Our results The Ward equation The twisted hierarchy

References

- 5.4 Twisted $\frac{O(J, J)}{O(J) \times O(J)}$-hierarchies (continued)
- Let $\sigma_{i}, i \in\{0,1\}$, be the involutions on $O(J, J)$ defined by

$$
\begin{gathered}
\sigma_{i}(x)=I_{n+i, n-i} x I_{n+i, n-i}^{-1} \\
\text { and } \quad \hat{\sigma}_{0}(f)(\lambda)=\sigma_{0}(f(-\lambda)), \quad \hat{\sigma}_{1}(f)(\lambda)=\sigma_{1}\left(f\left(\frac{1}{\lambda}\right)\right),
\end{gathered}
$$

be involutions on $L(O(J, J))$. Let

$$
L^{\sigma_{0}}=\left\{f \in L(O(J, J)) \mid \hat{\sigma}_{0}(f)=f\right\} \subset L(O(J, J))
$$

Then there are splittings of the loop group $L^{\sigma_{0}}$ given by the subgroups

$$
\begin{aligned}
& L_{+}^{\sigma_{0}}=\left\{f \in L^{\sigma_{0}} \mid f: \mathbb{A}_{\epsilon, 1 / \epsilon} \xrightarrow{\text { holo. }} G L_{2 n}(\mathbb{R}), \hat{\sigma}_{1}(f)=f, f(1) \in S_{0}\right\}, \\
& L_{-}^{\sigma_{0}}=\left\{f \in L^{\sigma_{0}} \mid f: \mathbb{C} / \mathbb{D}_{1 / \epsilon} \xrightarrow{\text { holo. }} G L_{2 n}(\mathbb{R}), f(\infty) \in K_{0}^{\prime}\right\}
\end{aligned}
$$

The twisted hierarchy

- 5.4 Twisted $\frac{O(J, J)}{O(J) \times O(J)}$-hierarchies (continued)
- Let $\hat{\pi}_{ \pm}$denote the projections onto $\mathcal{L}_{ \pm}^{\sigma_{0}}$ with respect to the splitting and

$$
J_{a, j}=a \lambda^{j}+\sigma_{1}(a) \lambda^{-j} \in \mathcal{L}_{+}^{\sigma_{0}}
$$

for some constant regular $a \in \mathcal{A}$. Here \mathcal{A} be a maximal abelian subalgebra of $\mathcal{P}_{0}, o(J, J)=\mathcal{K}_{0}+\mathcal{P}_{0}$.

- Definition: The $2 j+1$-th twisted $\frac{O(J, J)}{O(J) \times O(J)}$-flow (twisted by σ_{1}) is the compatibility condition of

$$
\left[\partial_{x}+\hat{\pi}_{+}\left(M J_{a, 1} M^{-1}\right), \partial_{t}+\hat{\pi}_{+}\left(M J_{\tilde{a}, 2 j+1} M^{-1}\right)\right]=0
$$

for some $M=M(x, \lambda) \in L_{-}^{\sigma_{0}}$.

The twisted hierarchy

Riemann-Hilbert Approach

Derchyi Wu

- 5.4 Twisted $\frac{O(J, J)}{O(J) \times O(J)}$-hierarchies (continued)
- The associated Lax pairs are Laurent polynomials in the spectral variable λ. The reality conditions of the Lax pairs are induced from the simplest Dihedral group.
- 5.5 Twisted $\frac{O(J, J)}{O(J) \times O(J)}$-system
- Definition: The twisted $\frac{O(J, J)}{O(J) \times O(J)}$-system is the compatibility condition of

$$
\left[\partial_{x_{i}}+\hat{\pi}_{+}\left(M J_{a_{i}, 1} M^{-1}\right), \partial_{x_{j}}+\hat{\pi}_{+}\left(M \tilde{a}_{\tilde{a}_{j}, 1} M^{-1}\right)\right]=0
$$

for some $M=M\left(x_{1}, \cdots, x_{n}, \lambda\right) \in L_{-}^{\sigma_{0}}, 1 \leq i, j \leq n$ and

$$
a_{i}=\left(\begin{array}{cc}
0 & e_{i} \\
e_{i} & 0
\end{array}\right), e_{i}=\operatorname{diag}(0, \cdots, 0, \overbrace{1}^{i-\text { th entry }}, 0, \cdots, 0) .
$$

The twisted hierarchy

- 5.6 Our results [Ma, Wu]
- The $2 J+1$-th twisted $\frac{O(J, J)}{O(J) \times O(J)}$-flow is a nonlinear $2 j+1$-th order partial differential systems in the coefficients of $\hat{\pi}_{+}\left(M J_{a, 1} M^{-1}\right)$. We obtain the hyperbolic sinh-Gordon equation and are working on other explicit formula for large j.
- We have proved a global existence theorem of the initial value problem of the twisted $\frac{O(J, J)}{O(J) \times O(J)}$-flows (with mixed scattering data with arbitrary poles and multiplicity for $J=I$, and small data for $J \neq I$).
- We discover the associated submanifold geometry: n-dimensional time-like submanifolds of constant negative sectional curvature in the $(2 n-1)$-dimensional pseudo-Riemannian manifold of constant sectional curvature with signature $(2 n-2,1)$ describe the geometry of the twisted $\frac{O(J, J)}{O(J) \times O(J)}$-systems, with $J=\operatorname{diag}(1, \cdots, 1,-1)$.

References

[1] M. Ablowitz, R. Beals, K. Tenenblat: On the solution of the generalized wave and generalized sine Gordon equations. Stud. Appl. Math. 74 (1986), no. 3, 177-203.
[2] M. Ablowitz, D. Kaup, A. Newell, H. Segur: Method for solving the sine-Gordon equation. Phys. Rev. Lett. 30 (1973), 1262-1264
[3] R. Beals, R. R. Coifman: Scattering and inverse scattering for first order systems. Comm. Pure Appl. Math. 37 (1984), no. 1, 39-90.
[4] R. Beals, R. R. Coifman: Multidimensional inverse scatterings and nonlinear partial differential equations. Pseudodifferential operators and applications (Notre Dame, Ind., 1984),
45-70, Proc. Sympos. Pure Math., 43, Amer. Math. Soc., Providence, RI, 1985.
[5] P. T. Campos, K. Tenenblat: Backlund transformations for a class of systems of differential equations. Geom. Funct. Anal. 4 (1994), no. 3, 270-287.
[6] T. Carleman: Uber die Abelsche Integralgleichung mit konstanten Integrationsgrenzen.
Math. Z., 15 (1922), 111-120.
[7] B. Dai, C. L. Terng: Backlund transformations Ward solitons, and unitons. J. Differential Geom. 75 (2007), no. 1, 57-108.
[8] B. Dai, C. L. Terng, K. Uhlenbeck: On the space-time Monopole equation, Surv. Differ. Geom., 10, 1-30, Int. Press, Somerville, MA, 2006.
[9] A. S. Fokas, T. A. Ioannidou: The inverse spectral theory for the Ward equation and for the $2+1$ chiral model, Comm. Appl. Analysis, 5 (2001), 235-246.
[10] D. Hilbert: Uber eine Anwendung der Intergralgleichungen auf ein Problem der Funktionen-theorie. Verh. d. Intern. Mathematiker-Kongr., Heidelberg, (1904), 233-240.

References

Derchyi Wu
[11] M. Kruskal, R. Miura, C. Gardner, N. Zabusky : Korteweg-de Vries equation and generalizations. V. Uniqueness and nonexistence of polynomial conservation laws. J. Mathematical Phys., 11,(1970), 952-960.
[12] M. Kruskal, N. Zabusky : Exact invariants for a class of nonlinear wave equations. J. Mathematical Phys., 7,(1966), 1256-1267.
[13] P. Lax: Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math., 21 (1968), 467-490.
[14] B. Riemann: Grundlagen fur eine allgemeine Theorie der Functionen einer veranderlichen complexen Grosse. Gesammelte mathematische Werke und wissenschaftlicher Nachlass, Leipzig (1876), 3-47.
[15] J. Plemelj: Ein Erganzungssatz zur Cauchyschen Integraldarstellung analytischer Funktionen, Randwerte betreffend. Monatsh. Math. Phys., 19 No 1 (1908), 205-210.
[16] K. Tenenblat, C. L. Terng: Backlund's theorem for n-dimensional submanifolds of $\mathbb{R}^{2 n-1}$, Ann. Math., 111 (1980), 477-490.
[17] C. L. Terng: Soliton Hierarchies Constructed from Involutions, arXiv:1010.5596, (2010).
[18] J. Villarroel: The inverse problem for Ward's system, Stud. Appl. Math., 83 (1990),
211-222.
[19] R. S. Ward: Soliton solutions in an integrable chiral model in 2+1 dimensions, J. Math. Phys., 29 (1988), 386-389.
[20] D. Wu: The Cauchy problem of the Ward equation, J. of Functional Analysis, 256(2009), 215-257.

References

Riemann-Hilbert
Approach
Derchyi Wu
[21] D. Wu: The Cauchy problem of the Ward equation with mixed scattering data, J. Math. Phys., 49 (2008), 11.
[22] S. V. Manakov, V. E. Zakharov: Three-dimensional model of relativistic-invariant field theory, integrable by the inverse scattering transform Lett. Math. Phys., 5 (1981), 247-253.

