

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems Goal

The Ward equation The twisted hierarchy

References

The Riemann-Hilbert approach to higher dimensional integrable systems

Derchyi Wu

Institute of Mathematics Academia Sinica Taiwan

Cuernavaca, 2010

MATH, Academia Sinica, R.O.C

Outline

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable system: Goal

Our results

The Ward equa The twisted hierarchy

References

Background

- The Riemann-Hilbert problem
- Integrable systems
- Goal

Our results

- The Ward equation
- The twisted hierarchy

Outline

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems Goal

Our results

The twisted hierarchy

References

Background

• The Riemann-Hilbert problem

- Integrable systems
- Goal

Our result

- The Ward equation
- The twisted hierarchy

The Riemann Hilbert problem

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems Goal

Our results

The Ward equat The twisted hierarchy

References

• 1.1 [Riemann, 1851]

Let $\{M_t\}_{t\in\mathbb{S}^1}$ be a family of curves in \mathbb{C} . Find all functions ω holomorphic in the open unit disk \mathbb{D} and

$$\omega(t) \in M_t, \quad t \in \mathbb{S}^1. \tag{1}$$

• **1.2** [Hilbert, 1904] Write $\omega(t) = u(t) + iv(t)$, and (1) as

$$F(t, u(t), v(t)) = 0$$
 (2)

for a given $F : \mathbb{S}^1 \times \mathbb{R}^2 \to \mathbb{R}$. Differentiating the equation w.r.t. *t*, we obtain

$$a(t)\widetilde{u}(t) + eta(t)\widetilde{v}(t) = \gamma(t), \quad \forall t \in \mathbb{S}^1,$$

or

$$\Phi^+(t) - g(t)\Phi^-(t) = f(t), \quad t \in \mathbb{S}^1$$
 (3)

< □ > < 同 > < 三 > < 三 >

Sac

for given functions g(t) and f(t).

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems Goal

Our results

The Ward equati The twisted hierarchy

References

• **1.3 Theorem** (Scalar RH problem) [Plemelj, 1908], [Gakhov, 1938]

The solution of the scalar homogeneous RH problem (3) with Holder continuous g is given by

$$\Phi(z) = X(z)P_{m+\kappa},$$
 $X(z) = egin{cases} e^{\Gamma(z)}, & |z| < 1 \ z^{-\kappa}e^{\Gamma(z)}, & |z| > 1 \end{cases}$
 $\Gamma(z) = rac{1}{2\pi i}\int_{\mathbb{S}^1}rac{\log(au^{-\kappa}g(au))}{ au-z}d au,$

where $P_{m+\kappa}$ is a polynomial of degree $m + \kappa$, and $\kappa = index g(t)$.

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems Goal

Our results

The Ward equation The twisted hierarchy

References

• **1.5 Singular integral** [Carleman, 1922] Define the Cauchy integral

$$\mathcal{C}f(z) = rac{1}{2\pi i}\int_{\mathbb{R}}rac{f(t)}{t-z}\,dt.$$

Suppose the function $f \in H^1(\mathbb{R})$. Then

- $Cf \in H^1(\mathbb{R})$, Cf(z) is holomorphic and bounded in $\mathbb{C} \setminus \mathbb{R}$;
- Cf is uniformly Holder continuous of order 1/2 on $\mathbb{C}\setminus\mathbb{R}$;
- $(Cf)^{\pm}(t)$ exists pointwise for $t \in \mathbb{R}$ and $Cf \to 0$ uniformly as $z \to \infty$.

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable system: Goal

Our results The Ward equatio The twisted hierarchy

References

• **1.5 Small data matrix RH problem** [Beals-Coifman, 1984] *Suppose g satisfies*

$$|g-1|_{H^1(\mathbb{R},dt)} << 1.$$

Then there exist $\Phi \in L^{\infty}(\mathbb{R}, dt) + H^{1}(\mathbb{R}, dt)$ such that

$$egin{array}{lll} \Phi^+(t) = g(t) \Phi^-(t), & t \in \mathbb{R}, \ \Phi(\lambda) o 1, & z o \infty, \ \Phi(z) \ {\it is holomorphic} & z \in \mathbb{C}/\mathbb{R}, \end{array}$$

Image: A marked black

Sac

bounded and absolutely continuous in z.

The Riemann Hilbert problem

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems Goal

Our results

The Ward equati The twisted hierarchy

References

• **1.6 Large data matrix RH problem** [Beals-Coifman, 1984] *Suppose*

 $g(t) = (1 + U(t))D(t)(1 + L(t)), \quad \forall t \in \mathbb{R}$

where U upper triangular, D diagonal, L lower triangular and U, D-1, $L \in H^1(\mathbb{R}, dt)$,

• The homogeneous RH problem (w. 0 at infinity) has only the trivial solution.

Then there exist $\Phi \in L^{\infty}(\mathbb{R}, dt) + H^{1}(\mathbb{R}, dt)$ such that

$\Phi^+(t) = g(t)\Phi^-(t),$	$t\in\mathbb{R},$
$\Phi(\lambda) ightarrow 1,$	$Z \to \infty,$
$\Phi(z)$ is holomorphic	$z \in \mathbb{C}/\mathbb{R},$

bounded and absolutely continuous in λ .

MATH, Academia Sinica, R.O.C

▲□▶▲□▶▲三▶▲三▶ 三 釣�?

Outline

Biemann-Hilbert Approach

Background

The Riemann-Hilbert problem

< □ > < 同 > < 三 > < 三 >

Sac

- Integrable systems

- - The Ward equation

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems

Our results

The Ward equal The twisted hierarchy

References

 2.1 Integrable systems [Kruskal, Zabusky, Greene, Gardner, Miura, 1967], [Lax, 1968], [Beals, Coifman, 1985] An integrable system of q(x, t) is a nonlinear evolution equation which can be written as

 $[L_{\lambda}, M_{\lambda}] = 0$

and the initial value problem of the integrable system can be solved by using the inverse scattering theory of

 $L_{\lambda}\Psi(\mathbf{x},t,\lambda)=\mathbf{0}.$

That is,

MATH, Academia Sinica, R.O.C

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems

Our results The Ward equati

References

2.2 Direct problem

Given $q(\mathbf{x}, t)$, by

$$\left[\bar{\partial}_{\lambda}, L_{\lambda}\right] = \mathbf{0},\tag{4}$$

the eigenfunction $\Psi(\mathbf{x}, t, \lambda)$ constructed is holomorphic outside contours $\Sigma \subset \mathbb{C}$. Thus Ψ , or q, can be determined by $\bar{\partial}_{\lambda}\Psi$ which is supported on Σ .

Moreover, (4) implies $L_{\lambda}(\bar{\partial}_{\lambda}\Psi) = 0$, hence $\bar{\partial}_{\lambda}\Psi$ can be written as a multiple or an integral operator of $\Psi(\mathbf{x}, t, \lambda)$, where the multiple or the kernel is furthermore characterized by the algebraic properties of L_{λ} . Therefore, we choose the scattering data S_{λ} to be the essential part of the multiple or the kernel.

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems

Our results The Ward equatio The twisted

References

• 2.3 Inverse problem

Since the scattering data characterizes the $\overline{\partial}$ -data, the eigenfunction Ψ and its asymptotic properties can be found by solving a RH problem.

To find the potential $q(\mathbf{x}, t)$, note the property (4) $([\bar{\partial}_{\lambda}, L_{\lambda}] = 0)$ also implies $\bar{\partial}_{\lambda} (L_{\lambda} \Psi) = 0$. Together with the algebraic properties of S_{λ} , we have

 Ψ and $L_{\lambda}\Psi$ satisfy the same RH problem.

By investigating the λ -asymptotic property of $L_{\lambda}\Psi$, one can determine the potential $q(\mathbf{x}, t)$.

Outline

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems

Our results

The Ward equation The twisted hierarchy

References

Background

- The Riemann-Hilbert problem
- Integrable systems

Goal

Our result

- The Ward equation
- The twisted hierarchy

Derchyi Wu

Background

- The Riemann-Hilbert problem Integrable systems
- Our results The Ward equat
- The twisted hierarchy

References

We illustrate the ideas in solving the following higher dimensional integrable systems via the RH approach.

- The direct and inverse scattering problem of the Ward equation with large initial data and purely continuous scattering data;
- The inverse scattering problem of a twisted hierarchy associated with the generalized sine-Gordon equation.

Outline

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable system Goal

Our results The Ward equation The twisted

References

Background

- The Riemann-Hilbert problem
- Integrable systems
- Goal

2 Our results

- The Ward equation
- The twisted hierarchy

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems Goal

Our results The Ward equation The twisted hierarchy

References

4.1 The Ward equation

Taking a dimension reduction and a gauge fixing of the self-dual Yang-Mills equation in the space-time with signature (2, 2), one derives a 2 + 1 dimensional SU(N) chiral field equation with an additional torsion term.

$$-(J^{-1}J_{t})_{t} + (J^{-1}J_{x})_{x} + (J^{-1}J_{y})_{y} + \nu_{0}\left\{ (J^{-1}J_{y})_{x} - (J^{-1}J_{x})_{y} \right\} \\ + \nu_{1}\left\{ (J^{-1}J_{t})_{y} - (J^{-1}J_{y})_{t} \right\} + \nu_{2}\left\{ (J^{-1}J_{x})_{t} - (J^{-1}J_{t})_{x} \right\} = 0.$$

Where *J* lies in SU(N) and $\nu = (\nu_0, \nu_1, \nu_2)$ is a constant unit vector. Letting $\nu = (1, 0, 0)$ (time-like) and $\nu = (0, 1, 0)$ (space-like), we obtain two integrable systems, the 3-dimensional relativistic-invariant system and the Ward equation.

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems Goal

Our results The Ward equatio The twisted hierarchy

References

• 4.2 Previous works

The construction of simple solitons, and the study of their scattering properties was done by [Manakov, Zakharov, 81] for the 3-dimensional relativistic-invariant system and by many mathematicians for the Ward equation, see [Dai, Terng, 07] for references.

If the initial potential is sufficiently small, [Manakov, Zakharov, 81], [Villarroel, 89] studied the inverse scattering problem and solve the Cauchy problem of the 3-dimensional relativistic-invariant system and [Villarroel, 90], [Fokas, Ioannidou, 01], [Dai, Terng, Uhlenbeck, 06] of the Ward equation.

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems Goal

Our results The Ward equation The twisted

References

4.2 Our results

We solve the Cauchy problem of the Ward equation with large (and purely continuous) data by IVS in [Wu,08] and with mixed scattering data via a theory of Backlund transformation in [Wu, 09].

The Lax pair is derived as follows

$$(J^{-1}J_t)_t - (J^{-1}J_x)_x - (J^{-1}J_y)_y - [J^{-1}J_t, J^{-1}J_y] = 0$$

Then

$$\begin{split} & [\lambda\partial_x - \partial_\xi - A, \lambda\partial_\eta - \partial_x - B] = 0, \\ & \xi = -\frac{t+y}{2}, \quad \eta = \frac{t-y}{2}, \\ & J(x, y, t, 0) = \Psi(x, y, t, 0)^{-1}, \\ & A = -\frac{\partial\Psi}{\partial\xi}\Psi^{-1}, \ B = -\frac{\partial\Psi}{\partial x}\Psi^{-1}. \end{split}$$

MATH, Academia Sinica, R.O.C

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems Goal

Our results The Ward equatio The twisted bierarchy

References

• 4.2 Our results(continued) Set

$$egin{aligned} m{A} &= -\partial_x m{Q}, \ m{B} &= -\partial_\eta m{Q} \ (\eta, m{x}, m{\xi}) &
ightarrow (m{x}, m{y}, t), \end{aligned}$$

then the Ward equation turns into

$$\partial_x \partial_t Q = \partial_y^2 Q + [\partial_y Q, \partial_x Q]$$

with a Lax pair

$$(\partial_y - \lambda \partial_x) \Psi = (\partial_x Q) \Psi, (\partial_t - \lambda \partial_y) \Psi = (\partial_y Q) \Psi.$$

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems Goal

Our results The Ward equation The twisted hierarchy

References

• **4.2 Our results**(continued)Three important algebraic properties of the Lax operator $L_{\lambda} = \partial_y - \lambda \partial_x - q$ of the Ward equation,

(1) derivation property; (2) translating invariant property; (3) the principal part being equivalent to $\bar{\partial}$,

are used to reformulate the direct problem as a RH problem (hence the large data difficulty is resolved). More precisely,

MATH, Academia Sinica, R.O.C

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems Goal

Our results The Ward equation The twisted

References

• 4.2 Our results(continued)

• Translating invariant property:

If $\Psi(x, y, \lambda)$ is an e.f. of q(x, y), then $\Psi(x, y + y_0, \lambda)$ is an e.f. of $q(x, y + y_0)$.

Hence wlog, we can assume

$$egin{aligned} q &= q^- + q^+, \ q^- &= 0, \ \text{for} \ y \geq 1, \ q^+ &= 0, \ \text{for} \ y \leq -1, \ |\hat{q}^\pm_x(\xi,y)|_{L_1(d\xi dy)} < \left(rac{3}{2}
ight)^N, \end{aligned}$$

• □ ▶ • □ ▶ • □ ▶ • □ ▶

3

Jac.

and use an induction scheme to find the eigenfunctin Ψ . Since

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems Goal

Our results The Ward equation The twisted hierarchy

References

• 4.2 Our results(continued)

Using the derivation property of ∂_y − λ∂_x, any eigenfunction Ψ for *q*, whenever it exists, must be of the form

$$\Psi(x,y,\lambda) = egin{cases} \Psi^-(x,y,\lambda)a^-(x,y,\lambda), & y\leq 0, \ \Psi^+(x,y,\lambda)a^+(x,y,\lambda), & y\geq 0, \ (\partial_y-\lambda\partial_x)a^\pm=0. \end{cases}$$

Here $(\partial_y - \lambda \partial_x - q^{\pm}) \Psi^{\pm} = 0.$

• By a change of variables $x + \lambda y = \tilde{x} + i\tilde{y} = z$, $\tilde{x}, \tilde{y} \in \mathbb{R}$. The existence of Ψ is equivalent to solving the RH problem

$$\begin{split} \partial_{\overline{z}} f &= 0, \text{ for } z \in \mathbf{C}^{\pm}, \\ f^+ &= f^-(F-1), \\ F &= (\Psi^+)^{-1} \, \Psi^-. \end{split}$$

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Sac

Hence the direct, and the inverse problems are reduced to solving two types of RH problem with large data.

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems Goal

Our results The Ward equation

The twisted hierarchy

References

4.3 Remarks

- Triangular factorization in the approximation process is necessary to reduce the linear system to be just-determined.
- Need to solve RH problems with data composed of eigenfunctions derived by induction hypothesis.
- Nice asymptote is required to assure the solvability of the system of linear equations at infinity.
- For the direct problem, solvability of the linear system outside a bounded discrete set in $\mathbb{C}\setminus\mathbb{R}$ is assured by the mero. property.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Sac

• For the inverse problem, global solvability is assured by applying the **reality condition**.

Outline

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable system Goal

Our results The Ward equati The twisted

References

Backg

- The Riemann-Hilbert problem
- Integrable systems
- Goal

2 Our results

- The Ward equation
- The twisted hierarchy

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems Goal

Our results

The Ward equa The twisted hierarchy

References

• 5.1 The sine-Gordon equation

 $\mathcal{P} = \left\{ M \text{ surfaces of } -1 \text{ curv. in } \mathbb{R}^3 \right\}$ $\longleftrightarrow \left\{ u : u_{xx} - u_{tt} = \sin u \right\} \qquad (SGE)$

(日)

Sac

- [Backlund, 1875]
 - If $M \equiv \overline{M}$, then $M, \overline{M} \in \mathcal{P}$.
 - If $M \in \mathcal{P}$, then $\exists M_{\lambda} \in \mathcal{P}$, s.t. $M \equiv M_{\lambda}$.
- [Ablowitz, Kaup, Newell, Segur, 73] Lax pair & IVS of (SGE)

MATH, Academia Sinica, R.O.C

۲

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems Goal

Our results

The Ward equati The twisted

References

• 5.2 The generalized sine-Gordon equation

• [Chern, Terng, Tenenblat, 80]

$$\mathcal{P} = \left\{ M^n \text{ submfld of } -1 \text{ sec. curv. in } \mathbb{R}^{2n-1} \right\}$$
$$\longleftrightarrow \left\{ \text{ solutions of } (GSGE) \right\}$$

• (1) If
$$M \equiv \overline{M}$$
, then $M, \overline{M} \in \mathcal{P}$.
(2) If $M \in \mathcal{P}$, then $\exists M_{\lambda} \in \mathcal{P}$, s.t. $M \equiv M_{\lambda}$.

$$\begin{split} I &= \sum_{i=1}^{n} \alpha_{1i}^{2} \, dx_{i}^{2}, \, II = \sum_{i=2,j=1}^{n} \alpha_{ij} \alpha_{1j} \, dx_{j}^{2} e_{n+i-1}.\\ &\alpha \in O(n),\\ &\partial_{x_{j}} \alpha_{ki} = \alpha_{kj} h_{ji}, \, h_{ii} = 0, \qquad i \neq j,\\ &\partial_{x_{i}} h_{ij} + \partial_{x_{j}} h_{ji} + \sum_{k \neq i, j} h_{ki} h_{kj} = \alpha_{1i} \alpha_{1j}, \quad i \neq j\\ &\partial_{x_{k}} h_{ij} = h_{ik} h_{ki}, \qquad i, j, k \text{ distinct} \end{split}$$

MATH, Academia Sinica, R.O.C

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems Goal

Our results

The Ward equat The twisted

References

• 5.2 The generalized sine-Gordon equation (continued)

- [Ablowitz, Beals, Tenenblat,86] Lax pair & IVS of (GSGE)
- [Terng, 10] Twisted U/K-hierarchies, Twisted $O(n, n)/O(n) \times O(n)$ -system (GSGE), Local solutions via a loop group approach

• 5.3 The generating equation [Campos, Tenenblat, 94]

$$\mathcal{P} = \{ \text{ Riem. } n\text{-submfld of } -1 \text{ sec. curv. in } \mathbb{R}^{2n-2,1} \}$$

$$\leftrightarrow \{ \text{ solutions of (GE)} \}$$

$$\alpha \in O(n-1,1),$$

$$\partial_{x_j} \alpha_{ki} = \alpha_{kj} h_{ji}, \ h_{ii} = 0, \ i \neq j,$$

$$\partial_{x_i} h_{ij} + \partial_{x_j} h_{ji} + \sum_{k \neq i, j} h_{ki} h_{kj} = \alpha_{1i} \alpha_{1j}, \ i \neq j$$

$$\partial_{x_k} h_{ij} = h_{ik} h_{kj}, \ i, j, k \text{ distinct}$$

<ロト < 同ト < 三ト < 三ト

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Riemann-Hilbert Approach

Derchyi Wu

Background

- The Riemann-Hilbert problem Integrable systems Goal
- Our results
- The Ward equa The twisted hierarchy
- References

• **5.3 The generating equation** (continued) They constructed the Backlund transform and linearized it but could not solve the direct and inverse scattering problem.

• 5.4 Twisted $\frac{O(J,J)}{O(J) \times O(J)}$ -hierarchies [Ma, Wu]

• Let
$$J = I_{n-q,q} = \operatorname{diag}(\overbrace{1,\cdots,1}^{n-q \text{ times}}, \overbrace{-1,\ldots,-1}^{q \text{ times}}), \quad \tilde{J} = \begin{pmatrix} J & 0 \\ 0 & -J \end{pmatrix}$$
,
and

$$\begin{split} O(J,J) &= \left\{ x \in GL_{2n}(\mathbb{R}) | \ \tilde{J}x^t \tilde{J}x = 1 \right\}, \\ L(O(J,J)) &= \left\{ f : \mathbb{S}^{1/\epsilon} \to GL_{2n}(\mathbb{R}), \ \tilde{J}f\left(\bar{\lambda}\right)^* \tilde{J}f(\lambda) = 1 \right\}. \end{split}$$

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems Goal

Our results

The Ward equation The twisted

References

5.4 Twisted O(J,J)/O(J)×O(J) - hierarchies (continued)
 Let σ_i, i ∈ {0, 1}, be the involutions on O(J, J) defined by

 $\sigma_i(x) = I_{n+i,n-i} X I_{n+i,n-i}^{-1}$ and $\hat{\sigma}_0(f)(\lambda) = \sigma_0(f(-\lambda)), \ \hat{\sigma}_1(f)(\lambda) = \sigma_1(f(\frac{1}{\lambda})),$

be involutions on L(O(J, J)). Let

 $L^{\sigma_0} = \{f \in L(O(J,J)) | \hat{\sigma}_0(f) = f\} \subset L(O(J,J)).$

Then there are splittings of the loop group L^{σ_0} given by the subgroups

$$\begin{split} L^{\sigma_0}_+ &= \{ f \in L^{\sigma_0} | f : \mathbb{A}_{\epsilon, 1/\epsilon} \xrightarrow{holo.} GL_{2n}(\mathbb{R}), \, \hat{\sigma}_1(f) = f, \, f(1) \in S_0 \}, \\ L^{\sigma_0}_- &= \{ f \in L^{\sigma_0} | f : \mathbb{C}/\mathbb{D}_{1/\epsilon} \xrightarrow{holo.} GL_{2n}(\mathbb{R}), \, f(\infty) \in K_0' \}. \end{split}$$

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems Goal

Our results

The Ward equat The twisted

References

• 5.4 Twisted $\frac{O(J,J)}{O(J) \times O(J)}$ -hierarchies (continued)

• Let $\hat{\pi}_\pm$ denote the projections onto $\mathcal{L}_\pm^{\sigma_0}$ with respect to the splitting and

$$J_{a,j} = a\lambda^j + \sigma_1(a)\lambda^{-j} \in \mathcal{L}^{\sigma_0}_+$$

for some constant regular $a \in A$. Here A be a maximal abelian subalgebra of \mathcal{P}_0 , $o(J, J) = \mathcal{K}_0 + \mathcal{P}_0$.

• **Definition:** The 2j + 1-th twisted $\frac{O(J,J)}{O(J) \times O(J)}$ -flow (twisted by σ_1) is the compatibility condition of

$$\left[\partial_{x} + \hat{\pi}_{+}\left(MJ_{a,1}M^{-1}\right), \partial_{t} + \hat{\pi}_{+}\left(MJ_{\tilde{a},2j+1}M^{-1}\right)\right] = 0,$$

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Sac

for some $M = M(x, \lambda) \in L^{\sigma_0}_{-}$.

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems Goal

Our results

The Ward equation The twisted hierarchy

References

• 5.4 Twisted $\frac{O(J,J)}{O(J) \times O(J)}$ -hierarchies (continued)

• The associated Lax pairs are Laurent polynomials in the spectral variable λ . The reality conditions of the Lax pairs are induced from the simplest Dihedral group.

● 5.5 Twisted $\frac{O(J,J)}{O(J) \times O(J)}$ -system

Definition: The twisted <u>O(J,J)</u>-system is the compatibility condition of

$$\left[\partial_{x_i} + \hat{\pi}_+ \left(\boldsymbol{M} \boldsymbol{J}_{\boldsymbol{a}_i,1} \boldsymbol{M}^{-1}\right), \partial_{x_j} + \hat{\pi}_+ \left(\boldsymbol{M} \boldsymbol{J}_{\boldsymbol{\bar{a}}_j,1} \boldsymbol{M}^{-1}\right)\right] = \boldsymbol{0},$$

for some $M = M(x_1, \cdots, x_n, \lambda) \in L^{\sigma_0}_{-}$, $1 \leq i, j \leq n$ and

$$a_i = \begin{pmatrix} 0 & e_i \\ e_i & 0 \end{pmatrix}, e_i = diag(0, \cdots, 0, \underbrace{1}^{i-th \ entry}, 0, \cdots, 0).$$

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems Goal

Our results

The Ward equation The twisted

References

• 5.6 Our results [Ma, Wu]

- The 2*J* + 1-th twisted $\frac{O(J,J)}{O(J) \times O(J)}$ -flow is a nonlinear 2*j* + 1-th order partial differential systems in the coefficients of $\hat{\pi}_+$ (*MJ*_{a,1}*M*⁻¹). We obtain the hyperbolic sinh-Gordon equation and are working on other explicit formula for large *j*.
- We have proved a global existence theorem of the initial value problem of the twisted $\frac{O(J,J)}{O(J) \times O(J)}$ -flows (with mixed scattering data with arbitrary poles and multiplicity for J = I, and small data for $J \neq I$).
- We discover the associated submanifold geometry: *n*-dimensional time-like submanifolds of constant negative sectional curvature in the (2n - 1)-dimensional pseudo-Riemannian manifold of constant sectional curvature with signature (2n - 2, 1) describe the geometry of the twisted $\frac{O(J,J)}{O(J) \times O(J)}$ -systems, with $J = diag(1, \dots, 1, -1)$.

References

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems Goal

Our results

The Ward equati The twisted hierarchy

References

[1] M. Ablowitz, R. Beals, K. Tenenblat: On the solution of the generalized wave and oeneralized sine Gordon equations. Stud. Appl. Math. 74 (1986), no. 3, 177-203. [2] M. Ablowitz, D. Kaup, A. Newell, H. Segur: Method for solving the sine-Gordon equation. Phys. Rev. Lett. 30 (1973), 1262-1264 [3] R. Beals, R. R. Coifman: Scattering and inverse scattering for first order systems, Comm. Pure Appl. Math. 37 (1984), no. 1, 39-90. [4] R. Beals, R. R. Coifman: Multidimensional inverse scatterings and nonlinear partial differential equations. Pseudodifferential operators and applications (Notre Dame, Ind., 1984), 45-70, Proc. Sympos. Pure Math., 43, Amer. Math. Soc., Providence, RI, 1985. [5] P. T. Campos. K. Tenenblat: Backlund transformations for a class of systems of differential equations. Geom. Funct. Anal. 4 (1994), no. 3, 270-287. [6] T. Carleman: Uber die Abelsche Integralgleichung mit konstanten Integrationsgrenzen. Math. Z., 15 (1922), 111-120. [7] B. Dai, C. L. Terng: Backlund transformations Ward solitons, and unitons. J. Differential Geom. 75 (2007), no. 1, 57-108. [8] B. Dai, C. L. Terng, K. Uhlenbeck: On the space-time Monopole equation, Surv. Differ. Geom., 10, 1-30, Int. Press, Somerville, MA, 2006. [9] A. S. Fokas, T. A. Ioannidou: The inverse spectral theory for the Ward equation and for the 2 + 1 chiral model, Comm. Appl. Analysis, 5 (2001), 235-246.

[10] D. Hilbert: Uber eine Anwendung der Intergralgleichungen auf ein Problem der Funktionen-theorie. Verh. d. Intern. *Mathematiker-Kongr., Heidelberg*, (1904), 233-240.

MATH, Academia Sinica, R.O.C

References

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable systems Goal

Our results

The Ward equation The twisted hierarchy

References

[11] M. Kruskal, R. Miura, C. Gardner, N. Zabusky : Korteweg-de Vries equation and generalizations. V. Uniqueness and nonexistence of polynomial conservation laws. *J. Mathematical Phys.*, 11,(1970), 952-960.

[12] M. Kruskal, N. Zabusky : Exact invariants for a class of nonlinear wave equations. *J. Mathematical Phys.*, 7,(1966), 1256-1267.

[13] P. Lax: Integrals of nonlinear equations of evolution and solitary waves. *Comm. Pure Appl. Math.*, 21 (1968), 467-490.

[14] B. Riemann: Grundlagen fur eine allgemeine Theorie der Functionen einer veranderlichen complexen Grosse. *Gesammelte mathematische Werke und wissenschaftlicher Nachlass*, Leipzig (1876), 3-47.

[15] J. Plemelj: Ein Erganzungssatz zur Cauchyschen Integraldarstellung analytischer Funktionen, Randwerte betreffend. *Monatsh. Math. Phys.*, 19 No 1 (1908), 205-210.

[16] K. Tenenblat, C. L. Terng: Backlund's theorem for *n*-dimensional submanifolds of \mathbb{R}^{2n-1} , *Ann. Math.*, 111 (1980), 477–490.

[17] C. L. Terng: Soliton Hierarchies Constructed from Involutions, arXiv:1010.5596, (2010).

[18] J. Villarroel: The inverse problem for Ward's system, *Stud. Appl. Math.*, 83 (1990), 211-222.

[19] R. S. Ward: Soliton solutions in an integrable chiral model in 2+1 dimensions, *J. Math. Phys.*, 29 (1988), 386-389.

[20] D. Wu: The Cauchy problem of the Ward equation, *J. of Functional Analysis*, 256(2009), 215-257.

MATH, Academia Sinica, R.O.C

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ・ つへで

References

Riemann-Hilbert Approach

Derchyi Wu

Background

The Riemann-Hilbert problem Integrable system: Goal

Our results

The Ward equation The twisted hierarchy

References

[21] D. Wu: The Cauchy problem of the Ward equation with mixed scattering data, *J. Math. Phys.*, 49 (2008), 11.

[22] S. V. Manakov, V. E. Zakharov: Three-dimensional model of relativistic-invariant field theory, integrable by the inverse scattering transform *Lett. Math. Phys.*, 5 (1981), 247-253.

MATH, Academia Sinica, R.O.C

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > の < ⊙