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Construction of compact, complex, manifolds from dynamical systems

Consider the linear differential equation in Cn

dz1

dT
= λ1z1

...

dzn
dT

= λnzn

We will always consider complex time T ∈ C.
This equation can be written in matrix form:

dZ

dT
= ΛZ ,

where Λ = diag(λ1, · · · , λn) is adiagonal matrix, and Z = (z1, · · · , zn)t is a
column vector.



We will always assume that λi 6= 0 (i = 1, · · · , n) so that Λ is invertible.
The equation determines a linear action of C on Cn, in other words complex
flow, ϕT : Cn → Cn (Thus, ϕT1+T2 = ϕT1 ◦ ϕT2 ).

This linear flow is given explicitly by the formula:

ϕT (Z) = eTΛZ = (eTλ1 z1, · · · , eTλnzn)t ,T ∈ C, Z t ∈ Cn.

If Z 6= 0 the orbit or leaf of Z , denoted by L(Z) is parametrized by the map
from C to Cn given by the function

T 7→ (eTλ1 z1, · · · , eTλnzn)t , where Z = (z1, · · · , zn)t .



The complement of the origin Cn − {0}, is foliated by the orbits of the flow.
The orbits are immersed copies of C or C∗.
There is a dichotomy:

1. The origin of C is in the convex hull of {λ1, · · · , λn}.
This happens if and only if there exists a point Z such that its leaf L(Z)
does not accumulate at the origin.

2. The origin of C is not in the convex hull of {λ1, · · · , λn}.
This happens if and only if every leaf accumulates at the origin.

When 2) happens there exists (generically) an open set U , saturated by the
leaves of the flow, such that the space of leaves is a Hausdorff space which is in
fact a complex manifold M. Even more, there is a free holomorphic action of
C∗ on M such that the orbit space is a compact complex manifold. The set U
is the union of subspaces of Cn spanned by certain nonempty subsets of the
canonical basis of Cn.



BASIC EXAMPLE

In C consider a non-degenerate triangle with vertices λ1, λ2 and λ3. Suppose
that the origin is in the interior of this triangle. Then the open set U ⊂ C3 is
the complement of the three coordinate hyperplanes z1 = 0, z2 = 0 and z3 = 0.
The set in C3 − {0} given by the equation (?)

λ1|z1|2 + λ2|z2|2 + λ3|z3|2 = 0 (?)

meets every leaf in U in exactly one point. So that the space of leaves in U can
be identified with the set, also denoted by M, satisfying this equation.
The set M is a complex cone with the origin deleted so that if Z ∈ M also
cZ ∈ M for al c ∈ C∗.
Hence one has a free action of C∗ and the quotient N := M/C∗, then a
complex, compact manifold of dimension one. In fact N is an elliptic curve.

Any elliptic curve is obtained this way.



We see that N is the projectivization of M and therefore N can be identified is
the set of points satisfying the following two equations:

λ1|z1|2 + λ2|z2|2 + λ3|z3|2 = 0

|z1|2 + |z2|2 + |z3|2 = 1

modulo the natural action of the circle given by

(z1, z2, z3) 7→ (µz1, µz2, µz3), |µ| = 1, (z1, z2, z3) ∈ N.



We can generalize this to linear actions of Cm on Cn when n > 2m.

Let m be a positive integer and n an integer greater than 2m.

Let Λ = (Λ1, . . . ,Λn) be a configuration of n vectors of Cm.
Let H(Λ1, · · · ,Λn) ⊂ Cm be the convex hull of the n-tuple Λ = (Λ1, . . . ,Λn).

One says that Λ ist admissible if the following holds true:

1) The Siegel condition:
The origin 0 belongs to the convex hull H(Λ1, . . . ,Λn).

2) The weak hyperbolicity condition:
For every 2m-tuple (i1, · · · , i2m), 1 ≤ i1 < · · · < i2m ≤ n (recall n > 2m), one
has: 0 /∈ H(Λi1 , · · · ,Λi1 ).



Let F be the holomorphic foliation of complex projective (n − 1)-space Pn−1

given by the action

(T , [z]) ∈ Cm × Pn−1 7−→ [z1 · exp〈Λ1,T 〉, . . . , zn · exp〈Λn,T 〉] ∈ Pn−1

T = (t1, · · · , tm) ∈ Cm, Λi ∈ Cm.

The brackets denote projective homogeneous coordinates of the corresponding
projective space:

[z] := [z1, · · · , zn]

and 〈−,−〉 defined by:

〈[z], [w ]〉 := z1w1 + · · ·+ zmwm

is the inner product (not the hermitian product).



This action of Cm is the projectivization of the linear action in Cn given by the
family of m linear commuting vector fields of Cn given by the diagonal matrices
whose eigenvalues are the entries of Λi .
Therefore, consider the lifting of this action and the corresponding foliation F̃
of Cn given by the orbits of the action:

(T , z) ∈ Cm × Cn 7−→ (z1 · exp〈Λ1,T 〉, . . . , zn · exp〈Λn,T 〉) ∈ Cn

If z ∈ Cn we say that the leaf (or orbit) L(z) of the action of Cm is a Siegel leaf
if 0 it is not in the closure of L(z). If 0 is in the closure of L(z) we say that the
leaf L(z) is of Poincaré type.

Next we will describe an open set S, of Cn, where the space of leaves is
Hausdorff.



For z = (z1, · · · , zn) ∈ Cn, let I (z) = {j ∈ {1, 2 · · · , n}| zj 6= 0}

S = {z ∈ Cn | 0 ∈ H({Λi | i ∈ I (z)})}

and let V be the image of S in Pn−1.
Finally, let

T = {z ∈ Cn |
n∑

i=1

Λi |zi |2 = 0}

and

N = {[z] ∈ Pn−1 |
n∑

i=1

Λi |zi |2 = 0}



We see from its definition that S = Cn − E where E is an analytic set, whose
different components correspond to subspaces of Cn where some coordinates
vanish. Therefore S contains (C∗)n and it is invariant under the natural action
on Cn of (C∗)n via diagonal and invertible matrices.
Another characterization of S is the following:

S = {z ∈ Cn | 0 is not in the closure of the leaf of F̃ through z}

in other words S is the union of the Siegel Leaves and it open and invariant
under the action of Cm



The weak hyperbolicity condition implies that the system of quadratic equations
which define T et N , given before, are of maximal rank in in every point.

The Siegel condition implies that both T and N nonempty. One also shows
that F̃ is a non singular foliation when restricted to S and that T is a smooth
manifold which meets every leaf of F̃ contained in S and it is transverse to the
leaves. In other words: the quotient space F̃ restricted to S can be canonically
identified to T and therefore it is a Hausdorff space.

An important fact is that T can be given the structure of a complex manifold
which we denote by M.

In the same way, N can be identified with F restricted to V and therefore
becomes a compact complex manifold. Let us denote by N this complex
manifold. The complex dimension of M is n−m and the complex dimension of
N is n −m − 1.



The natural projection M → N, induced by the projection Cn \ {0} → Pn−1, is
a principal C∗-bundle.
Let M1 denote the total space of the associated circle bundle. It has the same
homotopy type as M but has the advantage of being compact. Let us note
that M1 can be identified with the transverse intersection of the cone T with
the unit sphere S2n−1 of Cn.
Therefore we define:

M1 = {z ∈ Cn |
n∑

i=1

Λi |zi |2 = 0,
n∑

i=1

|zi |2 = 1}

The space S has the same homotopy of M and therefore the same homotopy
type of M1.



Examples

(i) If n = 2m + 1, then the convex hull of the Λi ’s is combinatorially equal to
the 2m + 1-simplex of Cm ' R2m. If we take out one of the Λi ’s, 0 does not
belong to the convex closure of the others. In other words, S is equal to (C∗)n
One can show that N is a complex torus and that every complex torus is
obtained this way.

(ii) If m = 1 Let us define for, n ≥ 4:

Λ1 = 1 Λ2 = i Λ3 = . . . = Λn = −1− i .

One can prove in this case that S is equal to (C∗)2 × Cn−2 \ {0}.
Let us consider the two equations which define T :

|z1|2 = |z3|2 + . . .+ |zn|2

|z2|2 = |z3|2 + . . .+ |zn|2.

If we intersect T with the unit sphere Cn we see that this intersection is
diffeomorphic to S2n−5 × S1 × S1 and one shows that N is diffeomorphic to
S1 × S2n−5. In particular, for n = 4, one obtains all linear Hopf surfaces.



(iii) If m = 1 let:

Λ1 = 1 Λ2 = Λ3 = i Λ4 = Λ5 = −1− i .

The same reasoning as before shows that N is diffeomorphic to S3 × S3.

On obtains this in this way examples of Calabi-Eckmann.

A Calabi-Eckmann manifold is a complex manifold whose underlying smooth
manifold is a product of odd-dimensional spheres S2n−1 × S2m−1.
One can show that every linear Calabi-Eckmann manifold is obtained this way.



(iv) In the case that one has the configuration given by the vertices of the
pentagon

Santiago López de Medrano has shown that M1 is diffeomorphic to the
connected sum of five copies of S3 × S4. The manifold N, is the quotient of M1

by the orbits of a free action of S1.



Examples of complex. compact non-symplectic manifolds

In the examples (ii) and (iv), one obtains non-symplectic manifolds, since their
second de Rham cohomology group vanishes.
This is a general fact in the manifolds we have obtained:
In general the manifold N is a compact,complex manifold which is not
symplectic.

THEOREM
The following properties are two-by-two equivalent: (i) N est symplectic.

(ii) N is a Kähler manifold.
(iii) N is a complex torus
(iv) One has n = 2m + 1.



Toric varieties and Generalized Calabi-Eckmann fibrations

Let (Λ1, · · · ,Λn) be a configuration admissible i.e. it satisfies both the Siegel
and weak hyperbolicity conditions as before.
Consider the system of equations:

n∑
i=1

siΛi = 0

n∑
i=1

si = 0

We say that the configuration satisfies condition (K) if the dimension over Q of
the vector space of rational solutions of the system above is maximal, in other
words is of dimension n − 2m − 1.



THEOREM
Let N be one of our manifolds corresponding to a configuration which satisfies
condition (K).
Then N is a Seifert fibration in complex torii of dimension m over a
quasi-regular, projective, toric variety of dimension n − 2m − 1.

This theorem has the following:

COROLLARY
Let N satisfy the conditions of the above theorem. Then the algebraic reduction
of N is a quasi-regular, projective, toric variety of dimension n − 2m − 1.



As a particular case of the previous theorem one recovers the elliptic fibrations
used by E. Calabi et B. Eckmann to provide the product of spheres
S2p−1 × S2q−1 (pour p > 1 et q > 1) with a complex structure. This
generalization is given by the following

Definition
A generalized Calabi-Eckmann fibration is the fibration obtained by the
previous theorem.

Since we know, fixing m and n, that the set of configurations satisfying
condition (K) is dense in the space of admissible configurations on obtains:

COROLLARY
Every manifold N corresponding to an admissible configuration is a small
deformation of a generalized Calabi-Eckmann fibration



THEOREM
Let X be a projective, quasi-regular, toric variety. Then there exists m > 0 and
a manifold N corresponding to an admissible configuration which admits a
generalized Calabi-Eckmann over X and whose fibres are complex torii of
complex dimension m.
Furthermore, if X is nonsingular (smooth), one can choose m and N such that
the fibration is a holomorphic principal fibration .



Associated Polytope

Let N be as before. Let, as before,

M1 = {z ∈ Cn |
n∑

i=1

Λi |zi |2 = 0,
n∑

i=1

|zi |2 = 1}

Let us remark that the standard action of the torus (S1)n on Cn

(exp iθ, z) ∈ (S1)n × Cn 7−→ (exp iθ1 · z1, . . . , exp iθn · zn) ∈ Cn (??)

leaves M1 invariant. The quotient of M1 by this action can be identified, via
the difféomorphism r ∈ R+ → r 2 ∈ R+, to

K = {r ∈ (R+)n |
n∑

i=1

riΛi = 0,
n∑

i=1

ri = 1}



LEMMA
The quotient K is a convex polytope of dimension n − 2m − 1 with n − k
hyperfaces.

Proof. By definition K is the intersection of the space A of solutions of an
affine system with the closed sets ri ≥ 0. Each one of these closed sets defines
an affine half-space A ∩ {ri ≥ 0} in the affine space A. In other words, K is the
intersection of a finite number of affine half-spaces. Since this intersection is
bounded (since M1 is compact), one obtains indeed a convex polytope. The
weak hyperbolicity condition implies that the affine system that defines K is of
maximal rank. Hence, K is of dimension n − 2m − 1.



Let us consider in more detail the definition of K . The points r ∈ K verifying
ri > 0 for all i are the points which belong to the interior of the convex
polytope. They correspond to the points z de M1 which also belong to (C∗)n,
i.e. to the points of M1 such that the orbit under the action (??) is isomorphic
to (S1)n. The points which belong to a hyperface are exactly the points r of K
having all of its coordinates except one equal to zero. They correspond to the
points z de M1 which have a unique coordinate equal to zero, i.e. such that its
orbit under the action (??) is isomorphic to (S1)n−1. One obtains from the
definition of K that there exist points of K having all coordinates different
from zero except the ith coordinate if and only 0 belongs to the convex
envelope of the configuration formed by the Λj with j different from i ; hence if
and only if Λi is a point which can be eliminated keeping the conditions of
Siegel and weak hyperbolicity. therefore one has n − k hyperfaces. �



One calls the convex polytope K the associated polytope . One central idea is
that the topology of the manifolds M1, and therefore of the manifolds N, is
codified by the combinatorial type of the polytope K . To make this idea more
precise, it is interesting to push to the end the reasoning involved in the proof
of the preceding lemma. One had seen that

Ki = K ∩ {ri = 0, rj > 0 for j 6= i}

is nonempty, and therefore is a hyperface de K , if and only if

0 ∈ H((Λj)j 6=i ) .

Analogously, given I a subset of {1, . . . , n}, the set

KI = K ∩ {ri = 0 for i ∈ I , rj > 0 for j 6∈ I}

is nonempty, and therefore it is a facet of K of codimension equal the
cardinality of I , if and only if

0 ∈ H((Λj)j 6∈I )



One has therefore stablished a very important correspondence between two
convex polytopes: the polytope K on one hand and the convex hull of the Λi ’s
on the other hand.
This correspondence allows us to to prove the following result:

THEOREM
(i) The polytope K is simple, in other words, it is the dual of a simplicial
polytope.
(ii) Let P be a simple convex polytope. Then there exists manifolds N, as
described before, whose associated polytope is combinatorially equivalent to P.

Sketch of the proof. The first part is a direct consequence of the existence of
the correspondence. One translates the weak hyperbolicity condition in the
combinatorics of K to deduce that each vertex of K is a vertex of exactly
n − 2m − 1 edges, and this number is precisely the dimension of K . This
property characterizes simple polytopes. To prove (ii), one needs to reconstruct
the convex hull of the Λi ’s from the polytope P. The correspondence described
before can be expressed in the following way: The convex hull of the Λi ’s must
be a Gale diagram of the polytope which is dual to P . There are classical
methods in combinatorics and convex geometry to construct such diagrams and
this permits to finish the proof. �
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