From A_{n} (Calogero) to H_{4} (rational)

Alexander Turbiner

Nuclear Science Institute, UNAM, Mexico

November 29, 2010

Let us consider the Hamiltonian $=$ the Schrödinger operator

$$
\mathcal{H}=-\Delta+V(x), \quad x \in R^{d}
$$

A problem of quantum mechanics is to solve the Schrödinger equation

$$
\mathcal{H} \Psi(x)=E \Psi(x) \quad, \quad \Psi(x) \in L^{2}\left(R^{d}\right)
$$

finding the spectra (the energies and eigenfunctions).
The Hamiltonian is an infinite-dimensional matrix
To solve the Schrödinger equation \Rightarrow diagonalize the infinite-dimensional matrix

It is transcendental problem, the characteristic polynomial is of infinite order and it has infinitely-many roots. Do exist cases when roots (energies) can be found explicitly (exactly)?

- Calogero Model (A_{N-1} Rational model) (F. Calogero, '69)
N identical particles on a line with singular pairwise interaction

$$
\begin{gathered}
\bullet \mathbf{x}_{1}<\mathbf{x}_{2}<\mathrm{X}_{3}<\cdots<\mathrm{X}_{\mathrm{N}} \\
\mathcal{H}_{\mathrm{Cal}}=\frac{1}{2} \sum_{i=1}^{N}\left(-\frac{\partial^{2}}{\partial x_{i}^{2}}+\omega^{2} x_{i}^{2}\right)+\nu(\nu-1) \sum_{i>j}^{N} \frac{1}{\left(x_{i}-x_{j}\right)^{2}}
\end{gathered}
$$

Symmetry: S_{n} (permutations $x_{i} \rightarrow x_{j}$) and $\mathbb{Z}_{2}\left(\right.$ all $\left.x_{i} \rightarrow-x_{i}\right)$

$$
\begin{gathered}
\psi_{0}(x)=\prod_{i<j}\left|x_{i}-x_{j}\right|^{\nu} e^{-\frac{\omega}{2} \sum x_{i}^{2}}, \\
h_{\text {Cal }}=2 \Psi_{0}^{-1}\left(\mathcal{H}_{\text {Cal }}-E_{0}\right) \Psi_{0} \\
Y=\sum x_{i}, y_{i}=x_{i}-\frac{1}{N} Y, i=1, \ldots, N \\
\left(x_{1}, x_{2}, \ldots x_{N}\right) \rightarrow\left(Y, t_{n}(x)=\sigma_{n}(y(x)) \mid n=2,3 \ldots N\right) \\
\sigma_{k}(x)=\sum_{i_{1}<i_{2}<\ldots<i_{k}} x_{i_{1}} x_{i_{2}} \ldots x_{i_{k}} \\
\sigma_{k}(-x)=(-)^{k} \sigma_{k}(x) \\
t_{1}=0, t_{2}=\sum_{i<j}\left(x_{i}-x_{j}\right)^{2}=r^{2}
\end{gathered}
$$

radius in space of relative coordinates

After separation cms,

$$
\begin{gathered}
h_{\mathrm{Cal}}=\mathcal{A}_{i j}(t) \frac{\partial^{2}}{\partial t_{i} \partial t_{j}}+\mathcal{B}_{i}(t) \frac{\partial}{\partial t_{i}} \\
\mathcal{A}_{i j}=\frac{(N-i+1)(1-j)}{N} t_{i-1} t_{j-1}+\sum_{I \geq \max (1, j-i)}(2 l-j+i) t_{i+l-1} t_{j-I-1} \\
\mathcal{B}_{i}=\frac{1}{N}(1+\nu N)(N-i+2)(N-i+1) t_{i-2}+2 \omega(i-1) t_{i}
\end{gathered}
$$

\star Eigenvalues:

$$
\epsilon_{\{p\}}=2 \omega \sum_{i=2}^{N}(i-1) p_{i}
$$

the spectra linear in quantum numbers and of anisotropic harmonic oscillator with ratios $1: 2: 3: \ldots:(N-1)$
\star Hamiltonian h has infinitely many finite-dimensional invariant subspaces

$$
\mathcal{P}_{n}^{(N-1)}=\left\langle t_{2}{ }^{p_{2}} t_{3}{ }^{p_{3}} \ldots t_{N}{ }^{p_{N}} \mid 0 \leq \Sigma p_{i} \leq n\right\rangle
$$

where $n=0,1,2, \ldots$

$$
g l_{d+1} \text {-algebra (acting in } R^{d} \text {) }
$$

(almost degenerate or totally symmetric, Young tableaux is a row)

$$
(n, \underbrace{0,0, \ldots 0}_{d-1})
$$

$$
\begin{aligned}
\mathcal{J}_{i}^{-} & =\frac{\partial}{\partial t_{i}}, \quad i=1,2 \ldots d \\
\mathcal{J}_{i j}^{0} & =t_{i} \frac{\partial}{\partial t_{j}}, \quad i, j=1,2 \ldots d \\
\mathcal{J}^{0} & =\sum_{i=1}^{d} t_{i} \frac{\partial}{\partial t_{i}}-n \\
\mathcal{J}_{i}^{+} & =t_{i} \mathcal{J}^{0}=t_{i}\left(\sum_{j=1}^{d} t_{j} \frac{\partial}{\partial t_{j}}-n\right), \quad i=1,2 \ldots d .
\end{aligned}
$$

- $(d+1)^{2}$ generators
- if $n=0,1,2 \ldots$, fin-dim irreps

$$
\begin{gathered}
\mathcal{P}_{n}^{(d)}=\left\langle t_{1}^{p_{1}} t_{2}^{p_{2}} \ldots t_{d}^{p_{d}} \mid 0 \leq \Sigma p_{i} \leq n\right\rangle \\
\mathcal{P}_{0} \subset \mathcal{P}_{1} \subset \mathcal{P}_{2} \subset \ldots \subset \mathcal{P}_{n} \subset \ldots \mathcal{P}
\end{gathered}
$$

then such a construction is called infinite flag (filtration) \mathcal{P}. Remark. The flag $\mathcal{P}^{(d)}$ is made out of finite-dimensional irreducible representation spaces $\mathcal{P}_{n}^{(d)}$ of the algebra $g l_{d+1}$ taken in realization $(*)$.

Any operator made out of generators ($*$) has finite-dimensional invariant subspace which is finite-dimensional irreducible representation space and visa versa.
\star Hamiltonian:

$$
h_{\mathrm{Cal}}=\operatorname{Pol}_{2}\left(\mathcal{J}_{i}^{-}, \mathcal{J}_{i j}{ }^{0}\right)
$$

$g l(N-1)$ is the hidden algebra of N-body Calogero model. It is $g /(N-1)$ quantum top in constant magnetic field.
\star Eigenfunctions:
they are elements of the flag of polynomials $\mathcal{P}^{(N-1)}$.
Each subspace $\mathcal{P}_{n}^{(N-1)}$ contains C_{n+N-1}^{N-1} eigenfunctions (volume of the Newton polytope (prism))

Remark:

Calogero Hamiltonian $\mathcal{H}_{\text {Cal }}$ has 2 nd order integral.
After separation cms, the relative Hamiltonian admits separation of radial variable
$\mathcal{H}_{\text {Cal }}^{(r e l)}=-\frac{1}{2 r^{N-1}} \frac{\partial}{\partial r}\left(r^{N-1} \frac{\partial}{\partial r}\right)+\omega^{2} r^{2}+\frac{1}{2 r^{2}}(\underbrace{-\Delta_{\Omega}^{(N-1)}+\mathcal{W}(\Omega)}_{\mathcal{F}_{\text {Cal }}})$
where $\{\Omega\}$ are coordinates on $S^{(N-1)}$-sphere.
Evidently, the commutator

$$
\left[\mathcal{H}_{\mathrm{Cal}}, \mathcal{F}_{\mathrm{Cal}}\right]=0
$$

Gauge-rotated integral

$$
f_{\mathrm{Cal}}=\Psi_{0}^{-1}\left(\mathcal{F}_{\mathrm{Cal}}-F_{0}\right) \Psi_{0}
$$

where $\mathcal{F}_{\text {Cal }} \Psi_{0}=F_{0} \Psi_{0}$, is algebraic,

$$
f_{\mathrm{Cal}}=f_{i j}(t) \frac{\partial^{2}}{\partial t_{i} \partial t_{j}}+g_{i}(t) \frac{\partial}{\partial t_{i}}
$$

where $f_{i j}$ is 2 nd degree polynomial, $f_{2 j}=0$ g_{i} is 1 st degree polynomial, $g_{2}=0$

$$
f_{\mathrm{Cal}}=\mathrm{Pol}_{2}\left(\mathcal{J}_{i}^{-}, \mathcal{J}_{i j}{ }^{0}\right)
$$

in $g l(N-1)$ generators

$$
\left[h_{\mathrm{Cal}}(\mathcal{J}), f_{\mathrm{Cal}}(\mathcal{J})\right] \neq 0
$$

sl(2)-Quasi-Exactly-Solvable generalization

By adding to $h_{\text {Cal }}$, the operator

$$
\delta h^{(q e s)}=4\left(a t_{2}^{2}-\gamma\right) \frac{\partial}{\partial t_{2}}-4 a k t_{2}+2 \omega k
$$

we get $h_{\text {Cal }}+\delta h^{(q e s)}$ having fin-dim invariant subspace

$$
\mathcal{P}_{k}=\left\langle t_{2}^{p} \mid 0 \leq p \leq k\right\rangle
$$

Making a gauge rotation of $h_{\text {Cal }}+\delta h^{(q e s)}$ and change of variables to Cartesian the Hamiltonian becomes

$$
\begin{gathered}
\mathcal{H}_{C a l}^{(2)}=\frac{1}{2} \sum_{i=1}^{N}\left(-\frac{\partial^{2}}{\partial x_{i}{ }^{2}}+\omega^{2} x_{i}^{2}\right)+\nu(\nu-1) \sum_{j<i}^{N} \frac{1}{\left(x_{i}-x_{j}\right)^{2}}+ \\
\frac{2 \gamma[\gamma-2 n(1+\nu+\nu n)+3]}{r^{2}}+ \\
+a^{2} r^{6}+2 a \omega r^{4}-a[2 k+2 n(1+\nu+\nu n)-\gamma-1] r^{2},
\end{gathered}
$$

for which $(k+1)$ eigenfunctions are of the form

$$
\Psi_{k}^{(\mathrm{qes})}(x)=\prod_{i<j}^{n}\left|x_{i}-x_{j}\right|^{\nu}\left(r^{2}\right)^{\gamma} P_{k}\left(r^{2}\right) \exp \left[-\frac{\omega}{2} \sum_{k=1}^{n} x_{i}^{2}-\frac{a}{4} r^{4}\right],
$$

where P_{k} is a polynomial of degree k in $r^{2}=\sum_{i<j}\left(x_{i}-x_{j}\right)^{2}$

Hamiltonian Reduction Method

(Olshanetsky-Perelomov '77, Kazhdan-Kostant-Sternberg '78)

- Define Laplace-Beltrami operators on symmetric spaces of simple Lie groups (free/harmonic oscillator motion)
- Radial parts of L-B operators \equiv Olshanetsky-Perelomov Hamiltonians relevant from physical point of view. They can be associated with root systems.

Rational case:

$$
\mathcal{H}=\frac{1}{2} \sum_{k=1}^{N}\left[-\frac{\partial^{2}}{\partial x_{k}^{2}}+\omega^{2} x_{k}^{2}\right]+\frac{1}{2} \sum_{\alpha \in R_{+}} \nu_{|\alpha|}\left(\nu_{|\alpha|}-1\right) \frac{|\alpha|^{2}}{(\alpha \cdot x)^{2}}
$$

where R_{+}is a set of positive roots and $\nu_{|\alpha|}$ are coupling constants depending on the root length.

For all roots of the same length $\nu_{|\alpha|}=\nu$.
\star They take discrete values but can be generalized to any value.
Configuration space - Weyl chamber.
Ground state wave function

$$
\Psi_{0}(y)=\prod_{\alpha \in R_{+}}|(\alpha \cdot y)|^{\nu_{|\alpha|}} e^{-\omega y^{2} / 2}
$$

The Hamiltonian is completely-integrable (super-integrable) and exactly-solvable for any value of $\nu>-\frac{1}{2}$ and $\omega>0$. It is invariant wrt Weyl (Coxeter) group transformation (symmetry group of root space)

Procedure:

- Gauging away ground state eigenfunction (similarity transformation) $\left(\Psi_{0}\right)^{-1}\left(\mathcal{H}-E_{0}\right) \Psi_{0}=h$
- Olshanetsky-Perelomov Hamiltonians (OPH) possess different symmetries (permutations, translation-invariance, reflections, periodicity etc). These symmetries correspond to the Weyl (Coxeter) group plus translations. By coding these symmetries to new coordinates (taking the Weyl (Coxeter) invariants as new coordinates) we find 'premature' (undressed by symmetries) operators to these Hamiltonians.

Example: $\operatorname{Weyl}\left(A_{n}\right)=S_{n}+T$

WHAT ARE THESE COORDINATES?

- Weyl (Coxeter) polynomial invariants:

$$
t_{a}^{(\Omega)}(x)=\sum_{\alpha \in \Omega}(\alpha, x)^{a}
$$

where a's are the degrees of the Weyl (Coxeter) group W and Ω is an orbit.
The invariants t are defined ambiguously, up to invariants of lower degrees, they depend on chosen orbit. but always lead to rational OPH h in a form of algebraic operator with polynomial coeffs.

- $B C_{N}$-Rational model

$$
\begin{gathered}
\mathcal{H}_{B C_{N}}=-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{\partial^{2}}{\partial x_{i}^{2}}-\omega^{2} x_{i}^{2}\right) \\
+\nu(\nu-1) \sum_{i<j}\left[\frac{1}{\left(x_{i}-x_{j}\right)^{2}}+\frac{1}{\left(x_{i}+x_{j}\right)^{2}}\right]+\frac{\nu_{2}\left(\nu_{2}-1\right)}{2} \sum_{i=1}^{N} \frac{1}{x_{i}^{2}}
\end{gathered}
$$

Symmetry: $S_{n} \oplus\left(\mathbb{Z}_{2}\right)^{\otimes n}$ (permutations $x_{i} \rightarrow x_{j}$ and $\left.x_{i} \rightarrow-x_{i}\right)$

$$
\begin{gathered}
\Psi_{0}=\left[\prod_{i<j}\left|x_{i}-x_{j}\right|^{\nu}\left|x_{i}+x_{j}\right|^{\nu} \prod_{i=1}^{N}\left|x_{i}\right|^{\nu_{2}}\right] e^{-\frac{\omega}{2} \sum_{i=1}^{N} x_{i}^{2}} \\
h_{B C_{N}}=\left(\Psi_{0}\right)^{-1}\left(\mathcal{H}_{B C_{N}}-E_{0}\right) \Psi_{0} \\
\left(x_{1}, x_{2}, \ldots x_{N}\right) \rightarrow\left(\sigma_{k}\left(x^{2}\right) \mid k=1,2, \ldots, N\right) \\
\sigma_{k}\left(x^{2}\right)=\sum_{i_{1}<i_{2}<\cdots<i_{k}} x_{i_{1}}^{2} x_{i_{2}}^{2} \cdots x_{i_{k}}^{2} \\
\sigma_{1}\left(x^{2}\right)=x_{1}^{2}+x_{2}^{2}+\ldots+x_{N}^{2}=r^{2}
\end{gathered}
$$

$$
\begin{gathered}
h_{B C_{N}}=\mathcal{A}_{i j}(\sigma) \frac{\partial^{2}}{\partial \sigma_{i} \partial \sigma_{j}}+\mathcal{B}_{i}(\sigma) \frac{\partial}{\partial \sigma_{i}} \\
\mathcal{A}_{i j}=-2 \sum_{I \geq 0}(2 I+1+j-i) \sigma_{i-I-1} \sigma_{j+l} \\
\mathcal{B}_{i}=\left[1+\nu_{2}+2 \nu(N-i)\right](N-i+1) \sigma_{i-1}+2 \omega i \sigma_{i}
\end{gathered}
$$

\star Eigenvalues:

$$
\epsilon_{n}=2 \omega \sum_{i=1}^{N} i n_{i}
$$

the spectra linear in quantum numbers and of anisotropic harmonic oscillator with ratios $1: 2: 3: \ldots: N$
\star Hamiltonian h has infinitely many finite-dimensional invariant subspaces

$$
\mathcal{P}_{n}^{(N)}=\left\langle\sigma_{1}^{p_{1}} \sigma_{2}^{p_{2}} \ldots \sigma_{N}{ }^{p_{N}} \mid 0 \leq \Sigma p_{i} \leq n\right\rangle
$$

where $n=0,1,2, \ldots$
\star Hamiltonian:

$$
h_{\mathrm{BC}_{\mathrm{N}}}=\operatorname{Pol}_{2}\left(\mathcal{J}_{i}^{-}, \mathcal{J}_{i j}{ }^{0}\right)
$$

$g I(N)$ is the hidden algebra of $B C_{N}$ rational model. It is $g /(N)$ quantum top in constant magnetic field.
\star Eigenfunctions:
they are elements of the flag of polynomials $\mathcal{P}^{(N)}$. Each subspace $\mathcal{P}_{n}^{(N)}$ contains C_{n+N}^{N} eigenfunctions (volume of the Newton polytope (prism))

Remark:

$B C_{N}$ Hamiltonian admits 2nd order integral as result of separation of radial variable

$$
\mathcal{H}_{B C_{N}}=-\frac{1}{2 r^{N-1}} \frac{\partial}{\partial r}\left(r^{N-1} \frac{\partial}{\partial r}\right)+\omega^{2} r^{2}+\frac{1}{2 r^{2}}(\underbrace{-\Delta_{\Omega}^{(N-1)}+\mathcal{W}(\Omega)}_{\mathcal{F}_{B C_{N}}})
$$

where $\{\Omega\}$ are coordinates on $S^{(N)}$-sphere.
Evidently, the commutator

$$
\left[\mathcal{H}_{B C_{N}}, \mathcal{F}_{B C_{N}}\right]=0
$$

Gauge-rotated integral

$$
f_{B C_{N}}=\Psi_{0}^{-1}\left(\mathcal{F}_{B C_{N}}-F_{0}\right) \Psi_{0}
$$

where $\mathcal{F}_{B C_{N}} \Psi_{0}=F_{0} \Psi_{0}$, is algebraic,

$$
f_{B C_{N}}=f_{i j}(t) \frac{\partial^{2}}{\partial t_{i} \partial t_{j}}+g_{i}(t) \frac{\partial}{\partial t_{i}}
$$

where $f_{i j}$ is 2 nd degree polynomial, $f_{1 j}=0$ g_{i} is 1 st degree polynomial, $g_{1}=0$

$$
f_{B C_{N}}=\operatorname{Pol}_{2}\left(\mathcal{J}_{i}^{-}, \mathcal{J}_{i j}{ }^{0}\right)
$$

in $g /(N)$ generators

$$
\left[h_{B C_{N}}(\mathcal{J}), f_{B C_{N}}(\mathcal{J})\right] \neq 0
$$

sl(2)-Quasi-Exactly-Solvable generalization

By adding to $h_{B C_{N}}$, the operator (the same as for Calogero model)

$$
\delta h^{(q e s)}=4\left(a \sigma_{1}^{2}-\gamma\right) \frac{\partial}{\partial \sigma_{1}}-4 a k \sigma_{1}+2 \omega k
$$

we get $h_{B C_{N}}+\delta h^{(q e s)}$ having fin-dim invariant subspace

$$
\mathcal{P}_{k}=\left\langle\sigma_{1}^{p} \mid 0 \leq p \leq k\right\rangle
$$

Making a gauge rotation of $h_{B C_{N}}+\delta h^{(q e s)}$ and change of variables to Cartesian the Hamiltonian becomes

$$
\begin{gathered}
\mathcal{H}_{B C_{N}}^{(1)}=-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{\partial^{2}}{\partial x_{i}^{2}}-\omega^{2} x_{i}^{2}\right) \\
+\nu(\nu-1) \sum_{i<j}\left[\frac{1}{\left(x_{i}-x_{j}\right)^{2}}+\frac{1}{\left(x_{i}+x_{j}\right)^{2}}\right]+\frac{\nu_{2}\left(\nu_{2}-1\right)}{2} \sum_{i=1}^{N} \frac{1}{x_{i}^{2}}+ \\
\frac{2 \gamma\left[\gamma-2 N\left(1+2 \nu(N-1)+\nu_{2}\right)+3\right]}{r^{2}}+ \\
+a^{2} r^{6}+2 a \omega r^{4}-a\left[2 k+2 N\left(1+2 \nu(N-1)+\nu_{2}\right)-\gamma-1\right] r^{2}
\end{gathered}
$$

for which $(k+1)$ eigenfunctions are of the form

$$
\Psi_{k}^{(\mathrm{qes})}(x)=\prod_{i<j}^{n}\left|x_{i}^{2}-x_{j}^{2}\right|^{\nu} \prod_{i=1}^{n}\left|x_{i}\right|^{\nu_{2}}\left(r^{2}\right)^{\gamma} P_{k}\left(r^{2}\right) \exp \left[-\frac{\omega r^{2}}{2}-\frac{a}{4} r^{4}\right]
$$

- Both A_{N} - and $B C_{N}$ - rational (and trigonometric) models possess algebraic forms associated with preservation of the same flag of polynomials $\mathcal{P}^{(N)}$. The flag is invariant wrt linear transformations in space of orbits $t \mapsto t+A$. It preserves the algebraic form of Hamiltonian.
- Their Hamiltonians (as well as higher integrals) can be written in the Lie-algebraic form

$$
h=P_{2}\left(\mathcal{J}\left(b \subset g I_{N+1}^{(*)}\right)\right)
$$

where P_{2} is a polynomial of 2 nd degree in generators \mathcal{J} of the maximal affine subalgebra of the algebra $g I_{N+1}$ in realization $(*)$. Hence $g l_{N+1}$ is their hidden algebra. From this viewpoint all four models are different faces of a single model.

- Supersymmetric A_{N} - and $B C_{N}$ - rational and trigonometric models possess algebraic forms, preserve the same flag of (super)polynomials and their hidden algebra is the superalgebra $g l(N+1 \mid N)$.

In the connection to flags of polynomials we introduce a notion 'characteristic vector'.
Let us consider a flag made out of "triangular" linear space of polynomials

$$
\mathcal{P}_{n, \vec{f}}^{(d)}=\left\langle x_{1}^{p_{1}} x_{2}^{p_{2}} \ldots x_{d}^{p_{d}} \mid 0 \leq f_{1} p_{1}+f_{2} p_{2}+\ldots+f_{d} p_{d} \leq n\right\rangle
$$

where the "grades" f 's are positive integer numbers and $n=0,1,2, \ldots$

DEFINITION. Characteristic vector is a vector with components α_{i}

$$
\vec{f}=\left(f_{1}, f_{2}, \ldots f_{d}\right)
$$

The characteristic vector for flag $\mathcal{P}^{(d)}$:

$$
\vec{f}_{0}=\underbrace{(1,1, \ldots 1)}_{d}
$$

Wolves model (G_{2} - Rational model) (Wolves, '75)

$$
\begin{aligned}
\mathcal{H}_{G_{2}}= & \frac{1}{2} \sum_{i=1}^{3}\left(-\frac{\partial^{2}}{\partial x_{i}^{2}}+\omega^{2} x_{i}^{2}\right)+\nu(\nu-1) \sum_{i<j}^{3} \frac{1}{\left(x_{i}-x_{j}\right)^{2}} \\
& +3 \mu(\mu-1) \sum_{k<l,}^{3} \frac{1}{k, l \neq m} \frac{1}{\left(x_{k}+x_{l}-2 x_{m}\right)^{2}}
\end{aligned}
$$

Symmetry: dihedral group D_{6}

$$
\begin{gathered}
\Psi_{0}=\prod_{i<j}^{3}\left|x_{i}-x_{j}\right|^{\nu} \prod_{k<1, k, l \neq m}^{3}\left|x_{i}+x_{j}-2 x_{k}\right|^{\mu} e^{-\frac{1}{2} \omega \sum x_{i}^{2}} \\
h_{G_{2}}=\left(\Psi_{0}\right)^{-1}\left(\mathcal{H}_{G_{2}}-E\right) \Psi_{0} \\
Y=\sum x_{i}, y_{i}=x_{i}-\frac{1}{3} Y, i=1,2,3
\end{gathered}
$$

$$
\lambda_{1}=-y_{1}^{2}-y_{2}^{2}-y_{1} y_{2}=r^{2} \quad, \quad \lambda_{2}=\left[y_{1} y_{2}\left(y_{1}+y_{2}\right)\right]^{2}
$$

After cms separation

$$
\begin{gathered}
h_{\mathrm{G}_{2}}=\lambda_{1} \partial_{\lambda_{1} \lambda_{1}}^{2}+6 \lambda_{2} \partial_{\lambda_{1} \lambda_{2}}^{2}-\frac{4}{3} \lambda_{1}^{2} \lambda_{2} \partial_{\lambda_{2} \lambda_{2}}^{2} \\
+\left\{2 \omega \lambda_{1}+2[1+3(\mu+\nu)]\right\} \partial_{\lambda_{1}}+\left[6 \omega \lambda_{2}-\frac{4}{3}(1+2 \mu) \lambda_{1}^{2}\right] \partial_{\lambda_{2}}
\end{gathered}
$$

\star Eigenvalues:

$$
\epsilon_{\{p\}}=2 \omega\left(p_{1}+3 p_{2}\right)
$$

the spectra of anisotropic harmonic oscillator with frequency ratio 1 : 3
\star Hamiltonian h has infinitely many finite-dimensional invariant subspaces

$$
\mathcal{P}_{n,(1,2)}^{(2)}=\left\langle\lambda_{1}^{p_{1}} \lambda_{2}^{p_{2}} \mid 0 \leq p_{1}+2 p_{2} \leq n\right\rangle, n=0,1,2, \ldots
$$

The flag $\mathcal{P}_{(1,2)}^{(2)}$ with $\vec{f}=(1,2)$ is preserved by $h_{\mathrm{G}_{2}}$
\star Eigenfunctions:
they are elements of the flag of polynomials $\mathcal{P}_{(1,2)}^{(2)}$.
Each subspace $\mathcal{P}_{n,(1,2)}^{(2)}$ contains \# eigenfunctions equals to volume of the Newton polygone

What about hidden algebra? Does exist algebra for which $\mathcal{P}_{n,(1,2)}^{(2)}$ is the space of (irreducible) representation?

The Lie algebra:

$$
\begin{gathered}
J^{1}=\partial_{t} \\
J_{n}^{2}=t \partial_{t}-\frac{n}{3}, J_{n}^{3}=2 u \partial_{u}-\frac{n}{3} \\
J_{n}^{4}=t^{2} \partial_{t}+2 t u \partial_{u}-n t \\
R_{i}=t^{i} \partial_{u}, i=0,1,2, \quad \mathcal{R}^{(2)} \equiv\left(R_{0}, R_{1}, R_{2}\right)
\end{gathered}
$$

they span non-semi-simple algebra $g /(2, \mathbf{R}) \ltimes \mathcal{R}^{(2)}$
S. Lie, ~ 1890 at $n=0$ and A. González-Lopéz et al, '91 at $n \neq 0$ (Case 24)

$$
\mathcal{P}_{n}^{(2)}=\left(t^{p} u^{q} \mid 0 \leq(p+2 q) \leq n\right)
$$

common invariant subspace (reducible)

By adding

$$
T_{0}^{(2)}=u \partial_{t}^{2}
$$

to $g I(2, \mathbf{R}) \ltimes \mathcal{R}^{(2)}$, the action on $\mathcal{P}_{n}^{(2)}$ gets irreducible.
Property:
$T_{i}^{(2)}=\underbrace{\left[J^{4},\left[J^{4},\left[\ldots J^{4}, T_{0}^{(2)}\right] \ldots\right]\right.}_{i}=u \partial_{t}^{2-i} J_{0}\left(J_{0}+1\right) \ldots\left(J_{0}+i-1\right)$,
$i=1,2,3$, all of the fixed degree $2, \quad J_{0}=t \partial_{t}+2 u \partial_{u}-n$
Nilpotency:

$$
T_{i}^{(2)}=0, i>2
$$

Commutativity:

$$
\left[T_{i}^{(2)}, T_{j}^{(2)}\right]=0, \quad i, j=0,1,2, \quad \mathcal{T}^{(2)} \equiv\left(T_{0}^{(2)}, T_{1}^{(2)}, T_{2}^{(2)}\right)
$$

Decomposition: $\quad g^{(2)} \doteq \mathcal{T}^{(2)} \rtimes g g_{2} \ltimes \mathcal{R}^{(2)}$

Infinite-dimensional, 10-generated algebra with $\mathcal{P}_{n}^{(2)}$ irreps space (seven generators of 1 st order and three of 2 nd)

$$
\begin{gathered}
h_{G_{2}}=\left(J^{2}+3 J^{3}\right) J^{1}-\frac{2}{3} J^{3} R_{2}+2[3(\mu+\nu)+1] J^{1} \\
+2 \omega J^{2}+3 \omega J^{3}-\frac{4}{3}(1+2 \mu) R_{2}
\end{gathered}
$$

Hence, $g /(2, \mathbf{R}) \ltimes \mathcal{R}^{(2)}$ is hidden algebra
(i) G_{2} Hamiltonian admits two mutually-non-commuting integrals: of 2 nd order integral as result of separation of radial variable r^{2} and of the 6th order.
(ii) Both integrals after gauge rotation with Ψ_{0} take in variables $\lambda_{1,2}$ the algebraic form. Both preserve the same flag $\mathcal{P}_{(1,2)}^{(2)}$.
(iii) Both integrals can be rewritten in term of generators of the algebra $g^{(2)}$: integral of 2 nd order in terms of $g /(2, \mathbf{R}) \ltimes \mathcal{R}^{(2)}$ only and of the 6 th order contains generators from $\mathcal{T}^{(2)}$ as well.
$s /(2)$-Quasi-Exactly-Solvable generalization
By adding to $h_{G_{2}}$, the operator (the same as for Calogero model and $B C_{N}$)

$$
\delta h^{(q e s)}=4\left(a \lambda_{1}^{2}-\gamma\right) \frac{\partial}{\partial \lambda_{1}}-4 a k \lambda_{1}+2 \omega k
$$

we get $h_{G_{2}}+\delta h^{(\text {qes })}$ having fin-dim invariant subspace

$$
\mathcal{P}_{k}=\left\langle\lambda_{1}^{p} \mid 0 \leq p \leq k\right\rangle
$$

Making a gauge rotation of $h_{G_{2}}+\delta h^{(q e s)}$ and change of variables ($Y, \lambda_{1,2}$) to Cartesian the Hamiltonian becomes

$$
\begin{gathered}
\mathcal{H}_{G_{2}}^{(1)}=-\frac{1}{2} \sum_{i=1}^{3}\left(\frac{\partial^{2}}{\partial x_{i}^{2}}-\omega^{2} x_{i}^{2}\right)+ \\
\nu(\nu-1) \sum_{i<j}^{3} \frac{1}{\left(x_{i}-x_{j}\right)^{2}}+3 \mu(\mu-1) \sum_{i<l, i, l \neq m}^{3} \frac{1}{\left(x_{i}+x_{I}-2 x_{m}\right)^{2}}+ \\
\frac{4 \gamma(\gamma+3 \mu+3 \nu)}{r^{2}}+ \\
a^{2} r^{6}+2 a \omega r^{4}+2 a[2 k-3(\mu+\nu)-2(\gamma+1)] r^{2},
\end{gathered}
$$

for which $(k+1)$ eigenfunctions are of the form

$$
\begin{gathered}
\Psi_{k}^{(\mathrm{qes})}= \\
\prod_{i<j}^{3}\left|x_{i}-x_{j}\right|^{\nu} \prod_{i<j ; i, j \neq p}^{3}\left|x_{i}+x_{j}-2 x_{p}\right|^{\mu}\left(r^{2}\right)^{\gamma} P_{k}\left(r^{2}\right) \exp \left[-\frac{\omega}{2} \sum_{i=1}^{3} x_{i}^{2}-\frac{a}{4} r^{4}\right]
\end{gathered}
$$

The H_{3} rational Hamiltonian

$$
\begin{aligned}
\mathcal{H}_{H_{3}}= & \frac{1}{2} \sum_{k=1}^{3}\left[-\frac{\partial^{2}}{\partial x_{k}^{2}}+\omega^{2} x_{k}^{2}+\frac{\nu(\nu-1)}{x_{k}^{2}}\right] \\
& +2 \nu(\nu-1) \sum_{\{i, j, k\}} \sum_{\mu_{1,2}=0,1} \frac{1}{\left[x_{i}+(-1)^{\mu_{1}} \varphi+x_{j}+(-1)^{\mu_{2}} \varphi-x_{k}\right]^{2}}
\end{aligned}
$$

where $\{i, j, k\}=\{1,2,3\}$ and all even permutations, and

$$
\varphi_{ \pm}=\frac{1 \pm \sqrt{5}}{2}
$$

Symmetry: H_{3} Coxeter group (full symmetry group of the icosahedron). It has order 120.
The Hamiltonian is symmetric with respect to the transformation

$$
\begin{aligned}
x_{i} & \longleftrightarrow x_{j} \\
\varphi_{+} & \longleftrightarrow \varphi_{-}
\end{aligned}
$$

The ground state:

$$
\Psi_{0}=\Delta_{1}^{\nu} \Delta_{2}^{\nu} \exp \left(-\frac{\omega}{2} \sum_{k=1}^{3} x_{k}^{2}\right), \quad E_{0}=\frac{3}{2} \omega(1+10 \nu)
$$

where

$$
\begin{aligned}
\Delta_{1} & =\prod_{k=1}^{3} x_{k} \\
\Delta_{2} & =\prod_{\{i, j, k\}} \prod_{\mu_{1,2}=0,1}\left[x_{i}+(-1)^{\mu_{1}} \varphi_{+} x_{j}+(-1)^{\mu_{2}} \varphi_{-} x_{k}\right] \\
& h_{H_{3}}=-2\left(\Psi_{0}\right)^{-1}\left(\mathcal{H}_{H_{3}}-E_{0}\right)\left(\Psi_{0}\right)
\end{aligned}
$$

New spectral problem arises

$$
h_{H_{3}} \phi(x)=-2 \epsilon \phi(x)
$$

New variables $\left(x_{1,2,3} \rightarrow \tau_{1,2,3}\right)$:

$$
\begin{aligned}
\tau_{1}= & x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \\
\tau_{2}= & -\frac{3}{10}\left(x_{1}^{6}+x_{2}^{6}+x_{3}^{6}\right)+\frac{3}{10}\left(2-5 \varphi_{+}\right)\left(x_{1}^{2} x_{2}^{4}+x_{2}^{2} x_{3}^{4}+x_{3}^{2} x_{1}^{4}\right) \\
& +\frac{3}{10}\left(2-5 \varphi_{-}\right)\left(x_{1}^{2} x_{3}^{4}+x_{2}^{2} x_{1}^{4}+x_{3}^{2} x_{2}^{4}\right)-\frac{39}{5} \\
\tau_{3}= & \frac{2}{125}\left(x_{1}^{10}+x_{2}^{10}+x_{3}^{10}\right)+\frac{2}{25}\left(1+5 \varphi_{-}\right)\left(x_{1}^{8} x_{2}^{2}+x_{2}^{8} x_{3}^{2}+x_{3}^{8} x_{1}^{2}\right) \\
& +\frac{2}{25}\left(1+5 \varphi_{+}\right)\left(x_{1}^{8} x_{3}^{2}+x_{2}^{8} x_{1}^{2}+x_{3}^{8} x_{2}^{2}\right) \\
& +\frac{4}{25}\left(1-5 \varphi_{-}\right)\left(x_{1}^{6} x_{2}^{4}+x_{2}^{6} x_{3}^{4}+x_{3}^{6} x_{1}^{4}\right) \\
& +\frac{4}{25}\left(1-5 \varphi_{+}\right)\left(x_{1}^{6} x_{3}^{4}+x_{2}^{6} x_{1}^{4}+x_{3}^{6} x_{2}^{4}\right) \\
& -\frac{112}{25}\left(x_{1}^{6} x_{2}^{2} x_{3}^{2}+x_{2}^{6} x_{3}^{2} x_{1}^{2}+x_{3}^{6} x_{1}^{2} x_{2}^{2}\right) \\
& +\frac{212}{25}\left(x_{1}^{2} x_{2}^{4} x_{3}^{4}+x_{2}^{2} x_{3}^{4} x_{1}^{4}+x_{3}^{2} x_{1}^{4} x_{2}^{4}\right)
\end{aligned}
$$

$$
h_{H_{3}}=\sum_{i, j=1}^{3} A_{i j} \frac{\partial^{2}}{\partial \tau_{i} \partial \tau_{j}}+\sum_{j=1}^{3} B_{j} \frac{\partial}{\partial \tau_{j}}
$$

$$
A_{11}=4 \tau_{1}
$$

$$
A_{12}=12 \tau_{2}
$$

$$
A_{13}=20 \tau_{3}
$$

$$
A_{22}=-\frac{48}{5} \tau_{1}^{2} \tau_{2}+\frac{45}{2} \tau_{3}
$$

$$
A_{23}=\frac{16}{15} \tau_{1} \tau_{2}^{2}-24 \tau_{1}^{2} \tau_{3}
$$

$$
A_{33}=-\frac{64}{3} \tau_{1} \tau_{2} \tau_{3}+\frac{128}{45} \tau_{2}^{3}
$$

$$
B_{1}=6+60 \nu-4 \omega \tau_{1}
$$

$$
B_{2}=-\frac{48}{5}(1+5 \nu) \tau_{1}^{2}-12 \omega \tau_{2}
$$

$$
B_{3}=-\frac{64}{15}(2+5 \nu) \tau_{1} \tau_{2}-20 \omega \tau_{3}
$$

The Hamiltonian $h_{H_{3}}$ preserves spaces

$$
\mathcal{P}_{n}^{(1,2,3)}=\left\langle\tau_{1}^{n_{1}} \tau_{2}^{n_{2}} \tau_{3}^{n_{3}} \mid 0 \leq n_{1}+2 n_{2}+3 n_{3} \leq n\right\rangle, \quad n \in \mathbf{N}
$$

\Rightarrow characteristic vector is $(1,2,3)$, they form an infinite flag
The spectra:

$$
\epsilon_{p_{1}, p_{2}, p_{3}}=2 \omega\left(p_{1}+3 p_{2}+5 p_{3}\right), \quad p_{i}=0,1,2, \ldots
$$

Degeneracy: $\quad p_{1}+3 p_{2}+5 p_{3}=$ integer
Anisotropic harmonic oscillator with ratios 1:3:5
Eigenfunctions $\phi_{n, i}$ of $h_{H_{3}}$ are elements of $\mathcal{P}_{n}^{(1,2,3)}$
$\mathcal{P}_{n,(1,2,3)}^{(3)}$ is finite-dimensional representation space of a Lie algebra of differential operators

We call this algebra $h^{(3)}$. It is infinite-dimensional but finitely generated
(with 30 generating elements of $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ orders, they form 10 Abelian subalgebras and one Cartan type)

The H_{4} integrable model

$$
\begin{aligned}
& \mathcal{H}_{H_{4}}=\frac{1}{2} \sum_{k=1}^{4}\left[-\frac{\partial^{2}}{\partial x_{k}^{2}}+\omega^{2} x_{k}^{2}+\frac{\nu(\nu-1)}{x_{k}^{2}}\right] \\
& \\
& +2 \nu(\nu-1) \sum_{\mu_{2,3,4}=0,1} \frac{1}{\left[x_{1}+(-1)^{\mu_{2}} x_{2}+(-1)^{\mu_{3}} x_{3}+(-1)^{\mu_{4}} x_{4}\right]^{2}} \\
& +2 \nu(\nu-1) \sum_{\{i, j, k, \ell\}} \sum_{\mu_{1,2}=0,1} \frac{1}{\left[x_{i}+(-1)^{\mu_{1}} \varphi_{+} x_{j}+(-1)^{\mu_{2}} \varphi-x_{k}+0 \cdot x_{l}\right]^{2}}
\end{aligned}
$$

where $\{i, j, k, l\}=\{1,2,3,4\}$ and all even permutations.

$$
\varphi_{ \pm}=\frac{1 \pm \sqrt{5}}{2}
$$

Symmetry: H_{4} Coxeter group (the symmetry group of the 600-cell. It has order 14400.

The Hamiltonian is symmetric wrt $x_{i} \longleftrightarrow x_{j}, \varphi_{+} \longleftrightarrow \varphi_{-}$

The ground state function and its eigenvalue

$$
\Psi_{0}=\Delta_{1}^{\nu} \Delta_{2}^{\nu} \Delta_{3}^{\nu} \exp \left(-\frac{\omega}{2} \sum_{k=1}^{4} x_{k}^{2}\right), \quad E_{0}=2 \omega(1+30 \nu)
$$

where

$$
\begin{aligned}
& \Delta_{1}=\prod_{k=1}^{4} x_{k} \\
& \Delta_{2}=\prod_{\mu_{2,3,4}=0,1}\left[x_{1}+(-1)^{\mu_{2}} x_{2}+(-1)^{\mu_{3}} x_{3}+(-1)^{\mu_{4}} x_{4}\right] \\
& \Delta_{3}=\prod_{\{i, j, k, l\}} \prod_{\mu_{1,2}=0,1}\left[x_{i}+(-1)^{\mu_{1}} \varphi_{+} x_{j}+(-1)^{\mu_{2}} \varphi-x_{k}+0 \cdot x_{l}\right]
\end{aligned}
$$

Make a gauge rotation of the Hamiltonian

$$
h_{H_{4}}=-2\left(\Psi_{0}\right)^{-1}\left(\mathcal{H}_{H_{4}}-E_{0}\right)\left(\Psi_{0}\right) .
$$

and introduce new variables $\tau_{1,2,3,4}$ as some polynomials in x of degrees 2,12,20,10 (degrees of H_{4}).

The Hamiltonian takes the algebraic form

$$
\begin{gathered}
h_{H_{4}}=\sum_{i, j=1}^{4} A_{i j} \frac{\partial^{2}}{\partial \tau_{i} \partial \tau_{j}}+\sum_{j=1}^{4} B_{j} \frac{\partial}{\partial \tau_{j}} \\
A_{11}=4 \tau_{1}, A_{12}=24 \tau_{2}, A_{13}=40 \tau_{3}, A_{14}=60 \tau_{4} \\
A_{22}=88 \tau_{1} \tau_{3}+8 \tau_{1}^{5} \tau_{2}, A_{23}=-4 \tau_{1}^{3} \tau_{2}^{2}+24 \tau_{1}^{5} \tau_{3}-8 \tau_{4} \\
A_{24}=10 \tau_{1}^{2} \tau_{2}^{3}+60 \tau_{1}^{4} \tau_{2} \tau_{3}+40 \tau_{1}^{5} \tau_{4}-600 \tau_{3}^{2} \\
A_{33}=-\frac{38}{3} \tau_{1} \tau_{2}^{3}+28 \tau_{1}^{3} \tau_{2} \tau_{3}-\frac{8}{3} \tau_{1}^{4} \tau_{4} \\
A_{34}=210 \tau_{1}^{2} \tau_{2}^{2} \tau_{3}+60 \tau_{1}^{3} \tau_{2} \tau_{4}-180 \tau_{1}^{4} \tau_{3}^{2}+30 \tau_{2}^{4}
\end{gathered}
$$

$$
A_{44}=-2175 \tau_{1} \tau_{2}^{3} \tau_{3}-450 \tau_{1}^{2} \tau_{2}^{2} \tau_{4}-1350 \tau_{1}^{3} \tau_{2} \tau_{3}^{2}-600 \tau_{1}^{4} \tau_{3} \tau_{4}
$$

$$
\begin{aligned}
& B_{1}=8(1+30 \nu)-4 \omega \tau_{1} \\
& B_{2}=12(1+10 \nu) \tau_{1}^{5}-24 \omega \tau_{2} \\
& B_{3}=20(1+6 \nu) \tau_{1}^{3} \tau_{2}-40 \omega \tau_{3} \\
& B_{4}=15(1-30 \nu) \tau_{1}^{2} \tau_{2}^{2}-450(1+2 \nu) \tau_{1}^{4} \tau_{3}-60 \omega \tau_{4}
\end{aligned}
$$

The algebraic operator $h_{H_{4}}$ preserves subspaces
$\mathcal{P}_{n}^{(1,5,8,12)}=\left\langle\tau_{1}^{n_{1}} \tau_{2}^{n_{2}} \tau_{3}^{n_{3}} \tau_{4}^{n_{4}} \mid 0 \leq n_{1}+5 n_{2}+8 n_{3}+12 n_{4} \leq n\right\rangle, \quad n \in \mathbf{N}$
\Rightarrow characteristic vector is $(1,5,8,12)$, they form flag

$$
\epsilon_{k_{1}, k_{2}, k_{3}, k_{4}}=2 \omega\left(k_{1}+6 k_{2}+10 k_{3}+15 k_{4}\right), \quad k_{i}=0,1,2, \ldots
$$

Degeneracy: $\quad k_{1}+6 k_{2}+10 k_{3}+15 k_{4}=$ integer
Anisotropic harmonic oscillator with ratios 1:6:10:15
Eigenfunctions $\phi_{n, i}$ of $h_{H_{4}}$ are elements of $\mathcal{P}_{n}^{(1,5,8,12)}$

- For rational Hamiltonians for all exceptional root spaces $F_{4}, E_{6,7,8}$ (also trigonometric) and non-crystallographic $I_{2}(k)$, the eigenfunctions are polynomials in their invariants (in symmetric variables).
- Their hidden algebras are new infinite-dimensional but finite-generated algebras of differential operators. All of them have finite-dimensional invariant subspaces in polynomials.
- Generating elements of any such hidden algebra can be grouped in even number of (conjugated) Abelian algebras L_{i}, $\mathfrak{L}_{\mathfrak{i}}$ and one Lie algebra B.

Figure: Triangular diagram relating the subalgebras L, \mathfrak{L} and $B . p$ is integer. It is a generalization of Gauss decomposition for semi-simple algebras $(p=1)$.

General view ((quasi)-exact-solvability)

There are several solvable potentials in $1 D$ generalized to D :

ES-case

$$
\omega^{2} r^{2}+\frac{\gamma}{r^{2}} \quad \rightarrow \quad \omega^{2} r^{2}+\frac{\gamma(\Omega)}{r^{2}}
$$

(generalization with discrete group of symmetry given by Weyl(Coxeter) group)

QES-case

$$
\omega^{2} r^{2}+\frac{\gamma}{r^{2}}+a r^{6}+b r^{4} \quad \rightarrow \quad \tilde{\omega}^{2} r^{2}+\frac{\tilde{\gamma}(\Omega)}{r^{2}}+a r^{6}+b r^{4}
$$

(generalization with discrete group of symmetry given by Weyl(Coxeter) group)

ES-case

$$
\frac{\gamma}{\sin ^{2}(x)} \quad \rightarrow \quad \sum_{\alpha \in R_{+}} g_{|\alpha|} \frac{1}{\sin ^{2}(\alpha \cdot x)}
$$

where R_{+}is a set of positive roots and $\mu_{|\alpha|}$ are coupling constants depending on the root length
(generalization with discrete group of symmetry given by Weyl(Coxeter) group + periodicity)

QES-cases

$$
\begin{array}{lll}
\frac{\gamma}{\sin ^{2}(x)}+a \sin ^{4}(x)+b \sin ^{2}(x) & \rightarrow & ? \\
\frac{\gamma}{\sin ^{2}(x)}+\frac{a}{\sin ^{6}(x)}+\frac{b}{\sin ^{4}(x)} & \rightarrow & ?
\end{array}
$$

(generalization with discrete group of symmetry given by Weyl(Coxeter) group + periodicity)

Crucial moment of consideration:

Invariants of the discrete group of symmetry of the system taken as variables (space of orbits).

Happy Birthday, Francesco!

