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Let us consider the Hamiltonian = the Schrodinger operator

H=-A+ Vi), xeR?

A problem of quantum mechanics is to solve the Schrodinger
equation
HV(x) = EV(x) , W(x)e [2(RY

finding the spectra (the energies and eigenfunctions).
The Hamiltonian is an infinite-dimensional matrix

To solve the Schrodinger equation = diagonalize the
infinite-dimensional matrix

It is transcendental problem, the characteristic polynomial is of
infinite order and it has infinitely-many roots. Do exist cases when
roots (energies) can be found explicitly (exactly)?



» Calogero Model (Ay_1 Rational model)
(F. Calogero, '69)

N identical particles on a line with singular pairwise interaction

@ ® @ @
X, < X, < X, < < Xy
N N
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Al = = - ; —1 —
Hcal 221< 8x,-2+w X; >+u(u );(x,-xJ-)Z
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Symmetry: S, (permutations x; — x;j) and Z (all x; = —x;)



Wo(x) = [ 1xi — xle 2 2%,
i<j

hcal = 2Vt (Hea — Eo) Yo

1
Y:Zx,-,y,-:x,-—NY, i=1,...,N

(x1, %2, ... xw) = (Y, tn(x) = on(y(x)) n=2,3...N)

ok(x) = Z Xiy Xiy -+« - Xij

i <ip<..<i

oi(=x) = (=) ou(x)

2 2
t1:0, t2:Z(Xi*Xj) =7
i<j
radius in space of relative coordinates



After separation cms,

02 0

hcal = Aﬁ(t)m + Bi(t)a—ti

N—i+1)(1—j .
Ajj = ( : I J) ti—1ti1+ Z (21 —j+ l)ti+l—1tj—l—1

N

I>max(1,j—1i)

B;:%(1+1/N)(N—i+2)(N—i+1)t;72+2w(i—1)t;




% Eigenvalues:

N
€p} = ZwZ(i— 1) pi
i=2

the spectra linear in quantum numbers and of anisotropic harmonic
oscillator with ratios 1:2:3:...: (N —1)

% Hamiltonian h has infinitely many finite-dimensional invariant
subspaces

VU = (5P24sP3 . tyPY| 0 < Ep; < n)

where n=10,1,2, ...



glgi1-algebra (acting in RY)

(almost degenerate or totally symmetric, Young tableaux is a row)

(n,0,0,...0)
——
d—1
0
k7, Bt,-’ ! ) )
0
0
fii = ti—, ,Jj=1,2 d,
j_/ 6tj I, )
d
0 _ .
J° = thlat, n,

» (d + 1)? generators
D



» ifn=20,1,2..., fin-dim irreps
(d) _ P14 P2 Pd 7
Pr’ = (&P &P t,P 0<Xp; < n)

PoCcPiCPrC...CP,C...P,

then such a construction is called infinite flag (filtration) P.
Remark. The flag P(?) is made out of finite-dimensional
irreducible representation spaces P,gd) of the algebra gly41

taken in realization (x).

Any operator made out of generators (x) has
finite-dimensional invariant subspace which is
finite-dimensional irreducible representation space
and visa versa.



% Hamiltonian:

hcar = Poh(J7 , J;°)

gl(N — 1) is the hidden algebra of N-body Calogero model.
It is g/(N — 1) quantum top in constant magnetic field.

% Eigenfunctions:

they are elements of the flag of polynomials P(N-1).
Each subspace P,SN_I) contains C,ﬁ:/\}q eigenfunctions
(volume of the Newton polytope (prism))



Remark:
Calogero Hamiltonian Hc,; has 2nd order integral.

After separation cms, the relative Hamiltonian admits separation of
radial variable

el
Cal 2rN=19r or

H(r ) — - (rN_lg> +w2r2+%(—A§zN_l) +W(Q))

where {Q} are coordinates on S(N=1_sphere.

Evidently, the commutator

[Hcal » Fca] = 0



Gauge-rotated integral
foa = Vot (Feal — Fo) Vo
where FcaWo = FoWo, is algebraic,

62 0

where f;; is 2nd degree polynomial, f; =0
gi is 1st degree polynomial, g =0

foa = Poh(J7 , J;%)
in gl(N — 1) generators

[hCal(j)’ fCal(j)] 7& 0
D



sl(2)-Quasi-Exactly-Solvable generalization

By adding to hca,, the operator

5h(qes) _ (at2 _ 7)@% — dakt, + 2wk
2

we get haal 4 0h(9%) having fin-dim invariant subspace
Pr = (510 < p < k)

Making a gauge rotation of hca + dh(9€9)
and change of variables to Cartesian the Hamiltonian becomes



2 _1 ¢ & 2.2 L 1
%CaI:§Z<87i2+w XI>+I/(V1)ZW+

i=1 j<i V!

2v[vy—2n(1 +v+wvn)+3]
r? +

+ a%r® + 2awr* — a2k +2n(1+v +vn) — vy —1]r?

for which (k + 1) eigenfunctions are of the form

W (x) = [T Ix = x50 (r) Pe(r?) exp [f XF = or ] ,

i<j

where Py is a polynomial of degree k in r? = Z,-<j(x,- — xj)?



Hamiltonian Reduction Method

(Olshanetsky-Perelomov '77, Kazhdan-Kostant-Sternberg '78)
» Define Laplace-Beltrami operators on symmetric spaces of
simple Lie groups (free/harmonic oscillator motion)

» Radial parts of L-B operators = Olshanetsky-Perelomov
Hamiltonians relevant from physical point of view. They can
be associated with root systems.

Rational case:

1 02 2.2 1 ]a!2
H=23 [—8—X£ +w Xk] 5 2 el =Dy

k=1 CMER+

where Ry is a set of positive roots and v, are coupling constants
depending on the root length.



For all roots of the same length v, = v.

% They take discrete values but can be generalized to any value.
Configuration space - Weyl chamber.

Ground state wave function

Voy) = [ (e -yl /2

aERL

The Hamiltonian is completely-integrable
(super-integrable) and exactly-solvable for any value of
v > —; and w > 0. It is invariant wrt Weyl (Coxeter)
group transformation (symmetry group of root space)




Procedure:

» Gauging away ground state eigenfunction (similarity
transformation) (W) ™1 (H — Eo)Wo = h

» Olshanetsky-Perelomov Hamiltonians (OPH) possess different
symmetries (permutations, translation-invariance, reflections,
periodicity etc). These symmetries correspond to the Weyl
(Coxeter) group plus translations. By coding these symmetries
to new coordinates (taking the Weyl (Coxeter) invariants as
new coordinates) we find 'premature’ (undressed by
symmetries) operators to these Hamiltonians.

Example: Weyl(A,) = S, + T



WHAT ARE THESE COORDINATES?

» Weyl (Coxeter) polynomial invariants:

7)) =Y (0, %)?,

a€ef

where a's are the degrees of the Weyl (Coxeter) group W and
Q is an orbit.

The invariants t are defined ambiguously, up to invariants of
lower degrees, they depend on chosen orbit.

but always lead to rational OPH h in a form of algebraic
operator with polynomial coeffs.



» BCy —Rational model

1 1 va(vs — 1) o= 1
=03 [ ) S

i<j

Symmetry: S, @ (Z3)®" (permutations x; — xj and x; — —Xx;)



N
Vo = | [T b —x1" i + ol [T b2 | 7225007

i<j i=1

hecy = (Wo) ™ (Hac, — Eo) Yo
(X17X27 ooa XN) — (Jk(Xz)‘ k:1,2,...,N)

W)= Y Bk

N<ip<---<ij

o1(x) =X+ X3+ ... +xx = r?



H? 0
hBCN = AU(U)W + B,’(O’)a—ai

—2 2(2/ +1+j—i)oi1m10j4
1>0

I+ +2v(N—=D](N—i+1)oi-1+2wio;



% Eigenvalues:

N

en:2w§ i nj

i=1
the spectra linear in quantum numbers and of anisotropic harmonic
oscillator with ratios 1:2:3:...: N

% Hamiltonian h has infinitely many finite-dimensional invariant
subspaces

P,SN) = (o1PoxP . ..onPV| 0 < Xp; < n)

where n=10,1,2, ...



% Hamiltonian:

hpcy = Pok(J: , Ji°)

gl(N) is the hidden algebra of BCy rational model.
It is g/(N) quantum top in constant magnetic field.

% Eigenfunctions:

they are elements of the flag of polynomials P(V).
Each subspace P,SN) contains C,Q’HV eigenfunctions
(volume of the Newton polytope (prism))



Remark:

BCy Hamiltonian admits 2nd order integral as result of
separation of radial variable

1 0 410 1 N—1
Hpey = T N1, <fN 1@) +w2r2+ﬁ(fA§2 )+W(Q))

Facy
where {Q} are coordinates on S(V)-sphere.

Evidently, the commutator

(HBcy » FBcy] = 0



Gauge-rotated integral

facy, = VYo' (Facy — Fo) Vo
where Fpgc, Vo = FoWy, is algebraic,

9?2 5]
focy = fi(t )6t6t +&i(t) 5

where f;; is 2nd degree polynomial, f;; =0
gi is 1st degree polynomial, g1 =0

facy = Pok(J; , Ji°)
in gl(N) generators

[hBCN(j)7fBCN(j)] # 0



sl(2)-Quasi-Exactly-Solvable generalization

By adding to hpc,, the operator (the same as for Calogero model)

6h(qes) — 4(30-% _ W)i — 4ak01 + 2wk
doq

we get hpc, + 6h(9¢) having fin-dim invariant subspace
Pi = (0710 < p < k)

Making a gauge rotation of hgc, + Sh(aes)
and change of variables to Cartesian the Hamiltonian becomes



1 1 va(vr — 1) o 1
+o(v - 1) [ + ]+ 22 —+
; (xi —x)* (i +x)? 2 ,-Z_;X;Q
2v[y — 2N+ 2v(N ~1) + 1) +3]
2
p

+ a%r® + 2awrt — a2k +2N(1 +2u(N — 1) + o) — v — 1] 12,

for which (k + 1) eigenfunctions are of the form

2

o)) = ] 12 —XZr”H\x,r”z Y Pu(r?) exp [—%—Zﬂ] |

i<j




» Both Ay— and BCy— rational (and trigonometric) models
possess algebraic forms associated with preservation of the
same flag of polynomials P(N). The flag is invariant wrt
linear transformations in space of orbits t — t + A. It
preserves the algebraic form of Hamiltonian.

» Their Hamiltonians (as well as higher integrals) can be written
in the Lie-algebraic form

h=Py(J(bC gl))

where P, is a polynomial of 2nd degree in generators 7 of the
maximal affine subalgebra of the algebra gly.1 in realization
(*). Hence gly1 is their hidden algebra. From this
viewpoint all four models are different faces of a single model.

» Supersymmetric Ay— and BCy— rational and trigonometric
models possess algebraic forms, preserve the same flag of
(super)polynomials and their hidden algebra is the
superalgebra gl(N + 1|N).



In the connection to flags of polynomials we introduce a notion
‘characteristic vector'.

Let us consider a flag made out of "triangular” linear space of
polynomials

P,(,df) = ({57 XG0 < ApL+ hpr + ...+ fapg < n)
where the “grades” f's are positive integer numbers and

n=0,1,2,....

DEFINITION. Characteristic vector is a vector with components «;

f=(f,f,. .  f)

The characteristic vector for flag P(9):

fo = (1,1,...1)
d



Wolves model (G, — Rational model) (Wolves, '75)

1 [ & L1
- Ny
He, 22( o2 +wx>+1/(1/ )Z(Xiij)z
=1 1<J
& 1
+3u(p—1) 5
k<l, kl#m (i +x1 = 2xm)
Symmetry: dihedral group Dg
3 3 . )
Vo=[Thi—x1” JI Ixi+x—2alte 2oz
i<j k<l kyl£m

= (Vo) (He, — E) Vo

1
Y:Zx,-,y,-:x,-—gY, i=1,2,3
T



2 2 2 2
M=-yi—ys—ywe=r", X=[y+y)
After cms separation

4
hG2 = )\18/2\1/\1 + 6)\28}2\1)\2 - 5)\%)\28)2\2)\2

4
H{2wA1 + 2L+ 30+ )]}, + [Bwda — 5(1+20)AT] 0y,

% Eigenvalues:

€py = 2w(p1+3p2)
the spectra of anisotropic harmonic oscillator with frequency ratio
1:3
% Hamiltonian h has infinitely many finite-dimensional invariant
subspaces

7?,(7,2()1,2) = MPXP[0<p+2py <n), n=0,1,2,...



)
The flag P;

(1.2) with f = (1,2) is preserved by hg,

% Eigenfunctions:

they are elements of the flag of polynomials 73((127)2).
Each subspace 7?,(72()1 2) contains # eigenfunctions
equals to volume of the Newton polygone

What about hidden algebra? Does exist algebra for which

73,(72()1 2) is the space of (irreducible) representation?



The Lie algebra:

Jl = at
n n
J,27 = tat — 5 s Jg = 2U6u — 5

JA = 20, + 2tud, — nt

n
R = t'9,,i=012, R®=(R,Ry,R)
they span non-semi-simple algebra g/(2, R) x R

S. Lie, ~1890 at n =0 and A. Gonzalez-Lopéz et al, '91 at n # 0
(Case 24)

P = (tPu?0 < (p +2q) < n)

common invariant subspace (reducible)



By adding

Té2) = ud?
to g/(2, R) x R(?, the action on PP gets irreducible.

Property:

T = AL L TP ] = ud (o +1). . (o +i—1)

i
i=1,2,3, all of the fixed degree 2, Jy=1td; + 2ud, — n
Nilpotency:

T =0,i>2.



Commutativity:

7@, TJ.(Q)] =0, i,j=012, 7TO®=(1P?, 1O 7

Decomposition: g =7 x gl x RA)
glo
+ 4
=O 7
P2(gl2)

Infinite-dimensional, 10-generated algebra with 73,(12) irreps

space (seven generators of 1st order and three of 2nd)
2
he, = (J*> +3)J* — gJ3R2 + 2[3(p + v) + 1)1

4
+2wS? + 3w)S3 — 5(1 + 2u)Rs

Hence, g/(2,R) x R(?) is hidden algebra
D



*

(i) G2 Hamiltonian admits two mutually-non-commuting integrals:
of 2nd order integral as result of separation of radial variable r?
and of the 6th order.

(ii) Both integrals after gauge rotation with Wq take in variables

A12 the algebraic form. Both preserve the same flag 73((12)2).

(i) Both integrals can be rewritten in term of generators of the
algebra g@: integral of 2nd order in terms of gl(2,R) x R® only
and of the 6th order contains generators from 72 as well.



*

s/(2)-Quasi-Exactly-Solvable generalization

By adding to hg,, the operator (the same as for Calogero model
and BCN)

5h(9es) = 4(ax? — fy)i — 4ak\; 4 2wk
o\
we get hg, + 8h(@es) having fin-dim invariant subspace

Pr=(M0< p<k)

Making a gauge rotation of hg, + Shlaes)
and change of variables (Y, A1 2) to Cartesian the Hamiltonian
becomes



3
1 02
EIZ:; <8X, > *

3

V—l)z +3M(M_1) Z (X,'—|-X/1— 2Xm)2+

i<j i<l, il#£m

4y(v +3p+ 3v)
r2 +

a’r® + 2awr* + 2a[2k —3(u+v) —2(y+1)] %,

for which (k + 1) eigenfunctions are of the form

3 3 3
[Tl TI bitrg—2%"(2) Pe(r) exp [_?Zx? - z]

i<j I<JiiJ#p




The Hs3 rational Hamiltonian

+2v(v —1)
{%} mzo L gy x;+ (=1)F2o_xi]?

where {i,j, k} = {1,2,3} and all even permutations, and

1++5
==

Symmetry: Hz Coxeter group (full symmetry group of the
icosahedron). It has order 120.
The Hamiltonian is symmetric with respect to the transformation

Xi & Xj
Y — P



The ground state:

3
3
Wo = AVAY exp (-% Zx£> . Eo=5w(l+10v)
k=1

where

ka
Ap = H IT Do+ (—0Mepg+ (—1)20-x]

{ij,k} 11,2=0,1

hry = —2(Wo) ™ (Hpy — Eo)(Wo)
New spectral problem arises
hh;o(x) = —2€e(x)

New variables (x123 — T123):



1 :x12+x22+x§

3 3
ra = — 5 (8 X8+ x8) + (2 5o ) [k + xod +d)
3 39
+¢&%wwﬂﬁé+@a+éé%~g
3= 108 O4° + % +x3°) + 25(1 +50_) (X353 +xEx3 + x8x3)
2
5 (14 504) (D4 + 254 +553)
4
+ae(1 = 5p0) Ok + it +x6xd)
4
+ (1= By ) (X0x8 +xpx +x3x3)

112
— S5 (055 + 38587 + x5xix3)

212
+ 22 (@ + ot + )



3

0? 0
b = 30 Arg + 2 8

ij=1
A11 = 47’1
A12 = 12’7’2
A13 = 20’7’3
48 45
Axn = *?71272 + 53
16
A23 =] 1—57'17'2 247_1 T3
64 128
Asz = _?7'17'273 + ETS
By =6+ 60rv —4wn
48
B, = z —(1+ 51/) — 12w
64
B; = 15 (2 + 51/)7'17'2 — 20wT3



The Hamiltonian hy, preserves spaces

(123) = (rmrrfs|0 <y + 2m +3n3 <), neN

= characteristic vector is (1,2,3), they form an infinite flag
The spectra:

€p1,p2,p3 — 2W(p1 aln 3,02 & 5P3) ,  Pi= 0, 15 2’ cee
Degeneracy: p1 + 3p2 + bp3 = integer
Anisotropic harmonic oscillator with ratios 1:3:5

Eigenfunctions ¢, ; of hy, are elements of 73,(,1’2’3)



73,(1?).1’273) is.finite—dimensional representation space of a Lie algebra
of differential operators

We call this algebra h(®). It is infinite-dimensional but finitely
generated

(with 30 generating elements of 15, 2" and 3' orders, they form
10 Abelian subalgebras and one Cartan type)



The Hj integrable model

Tar=1) Z [a + (=1)F2x + (—1)Hsx3 + (—1)Hxa]?

1

+2v(v—1)
{'uzkl} m;) 1 [xi + (—1)*M1o1x + (—1)H2p_xi + 0 - x/]?

where {i,j, k, I} = {1,2,3,4} and all even permutations.

1++5

Y+ = 5

Symmetry: Hy Coxeter group (the symmetry group of the 600-cell.
It has order 14400.

The Hamiltonian is symmetric wrt x; <— x; , @4 < @_



The ground state function and its eigenvalue

4
Wy = AYAYAY exp (% Zx£> . Ep=2w(1 + 30v)

where

4
Al = H Xk
k=1

Do= ] Da+(1)x+ (—1)2xs + (—1)*x]
#2,3,4=0,1

= [T I &+ Mo+ (-1 +0-x]

{iJ,k,} m1,2=0,1



Make a gauge rotation of the Hamiltonian
hy, = =2(Vo) " (Hm, — Eo)(Wo) -

and introduce new variables 71 > 3 4 as some polynomials in x of
degrees 2,12,20,10 (degrees of Hy).

The Hamiltonian takes the algebraic form

Ajj
Z U@T,@T +Z 167-
ij=1
Aln =41, Aip=247, Ai3=4073, Ay =60 7y

A =88 T3+ 8 070 , Aoz = —4 7572 424 1913 —8 1y

Az =10 7775 + 60 7{'7o73 + 40 974 — 600 75

8
A3z = -3 717'23 + 28 Tf'T273 -3 374

Azq = 210 7'127'227'3 + 60 Tf’TgT4 — 180 Tng +30 75



Agqg = —2175 7'17'237'3 — 4507’127'227'4 — 1350 7'137'27'3% — 600 Tf7'37'4

B; =8(1 + 30v) — 4wny
By = 12(1 + 10v) 17 — 24w
Bz = 20(1 + 6v) 727> — 40wTs
By = 15(1 — 30v) 1275 — 450(1 + 2v) 7173 — 60w,
The algebraic operator hy, preserves subspaces
piLAE12) - ({15273 7,*|0 < ni+5m+8n3+12n, < n), neN

= characteristic vector is (1,5,8,12), they form flag



€k ko kg ka = 2(4)(/(1 + 6/(2 + 10/(3 + 15/(4) , k,' = 0, 1, 2, -

Degeneracy: ki + 6ko 4+ 10ks + 15kq = integer

Anisotropic harmonic oscillator with ratios 1:6:10:15

i i 12
Eigenfunctions ¢, ; of hy, are elements of pL5812)



» For rational Hamiltonians for all exceptional root spaces
Fa4, Es 7,8 (also trigonometric) and non-crystallographic h(k),
the eigenfunctions are polynomials in their invariants (in
symmetric variables).

» Their hidden algebras are new infinite-dimensional but
finite-generated algebras of differential operators. All of them
have finite-dimensional invariant subspaces in polynomials.

» Generating elements of any such hidden algebra can be
grouped in even number of (conjugated) Abelian algebras L;,
£; and one Lie algebra B.



Figure: Triangular diagram relating the subalgebras L, £ and B. p is
integer. It is a generalization of Gauss decomposition for semi-simple
algebras (p = 1).



General view ((quasi)-exact-solvability)
There are several solvable potentials in 1D generalized to D:

*

ES-case

()
r2

w2r2 + 12 — w2r2 +
r

(generalization with discrete group of symmetry given by
Weyl(Coxeter) group)

*
QES-case

()

0L a8 bt — &P+ =2 +ar® + br
r

22, 7
wore + 2
(generalization with discrete group of symmetry given by
Weyl(Coxeter) group)



ES-case

: > Y B

sin“(x) ory sin?(a - x)

where R, is a set of positive roots and f,| are coupling constants
depending on the root length

(generalization with discrete group of symmetry given by
Weyl(Coxeter) group + periodicity)

QES-cases
Z + asin*(x) + bsin?(x) — ?
sin“(x)
b
T 2 4 57

sin?(x)  sin®(x)  sint(x)

(generalization with discrete group of symmetry given by
Weyl(Coxeter) group + periodicity)



Crucial moment of consideration:

Invariants of the discrete group of symmetry of the system
taken as variables (space of orbits).



Happy Birthday, Francesco!



