A Dirac-Moshinsky Oscillator coupled to an external field and its connection to quantum optics

J. Mauricio Torres Emerson Sadurní Thomas H. Seligman

Recent Developments in Integrable Systems and their Transition to Chaos Symposium in Honor of Francesco Calogero on the Occasion of his 75th Birthday

Mapping the DMO onto Jaynes-Cummings model

DO coupled to an external field

Two atoms in a cavity

Conclusions

★□> <個> <目> <目> <目> <<0</p>

Mapping the DMO onto Jaynes-Cummings model

DO coupled to an external field

Two atoms in a cavity

Conclusions

- ◆ □ ▶ → □ ▶ → □ ▶ → □ ● → のへで

Dirac-Moshinsky oscillator

The Dirac-Moshinsky oscillator was introduced in 1989 by Marcos Moshinsky and A. Szczepaniak as a solvable quantum relativistic model which in the non-relativistic limit corresponds to the hamiltonian of an harmonic oscillator with spin-orbit coupling term. It can be written as

$$i\hbar \frac{\partial |\Psi\rangle}{\partial t} = \left(c\alpha \cdot (\mathbf{p} + im\omega\beta\mathbf{r}) + mc^2\beta\right) |\Psi\rangle$$

in what follows we shall use the following dirac matrices

$$\boldsymbol{\alpha} = \left(\begin{array}{cc} 0 & i\boldsymbol{\sigma} \\ -i\boldsymbol{\sigma} & 0 \end{array}\right) \qquad \boldsymbol{\beta} = \left(\begin{array}{cc} \mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{array}\right)$$

and $\boldsymbol{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$ a vector operator with the usual Pauli matrices. and the state vector can be expressed as

$$|\Psi
angle = \left(egin{array}{c} |\psi_1
angle \ |\psi_2
angle \end{array}
ight)$$

Dirac-Moshinsky oscillator

We can write the Hamiltonian in matrix form

$$H = \begin{pmatrix} mc^2 \mathbf{1} & c \, \boldsymbol{\sigma} \cdot (\mathbf{r} + i\mathbf{p}) \\ c \, \boldsymbol{\sigma} \cdot (\mathbf{r} - i\mathbf{p}) & -mc^2 \mathbf{1} \end{pmatrix}$$

to show that it couples $|\psi_1\rangle$ and ψ_2 . Squaring it one obtains

$$\frac{E^2 - m^2 c^4}{c^2} |\psi_2\rangle = \left(p^2 + m^2 \omega^2 r^2 - 3\hbar\omega mc^2 - 2mc^2 \omega \boldsymbol{\sigma} \cdot \mathbf{L}\right) |\psi_2\rangle$$

in the non relativistic limit $E = mc^2 + \varepsilon$ and the term in the left becomes approximately $2mc^2\varepsilon$, so the non-relativistic energy ε is eigenvalue.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

1+1 DO

Let us consider now a DO in one spatial dimension. Here we only need two anticommuting matrices and we choose to write

$$H^{(1)} = -c\sigma_y(p + im\omega\sigma_z x) + mc^2\sigma_z$$

Using that the creation and annihilation operators $\sigma_{\pm} = (\sigma_x \pm \sigma_y)/2$ and $a = \sqrt{\frac{m\omega}{2\hbar}}x - i\frac{p}{m\omega}$ we end up with $H^{(1)} = \sqrt{2mc^2\hbar\omega} \left(\sigma_+ a + \sigma_- a^{\dagger}\right) + mc^2\sigma_3$

This is the well known Jaynes-Cummings Hamiltonian in Quantum optics.

(日) (周) (三) (三) (三) (○) (○)

Jaynes-Cummings model...

describes a two level atom interacting with one mode of the electromagnetic field in a cavity.

The connection with the DO:

- a and a[†] with the creation and annihilation operators of one electromagnetic mode.
- σ_{\pm} with the rise and lowering operators for a two level atom.

ъ

- $mc^2 \rightarrow \delta$: the detuning of the atomic transition from the mode frequency.
- $\sqrt{2mc^2\hbar\omega} \rightarrow \Omega$: the coupling between atom and mode.

Solution to the JC and 1 + 1 DO

The solution to this system is well known

$$H_{\rm JC} = \Omega(\sigma_+ a + \sigma_+ a^{\dagger}) + \delta \sigma_z$$

One notices that there is a conserved quantity $I = a^{\dagger}a + \sigma_z/2$, so that the Hamiltonian can be diagonalized in the $|-, n\rangle$, $|+, n-1\rangle$ basis in blockdiagonal 2x2 matrices.

$$H_{\rm JC} = \left(\begin{array}{cc} \delta & \Omega\sqrt{n} \\ \Omega\sqrt{n} & -\delta \end{array}\right)$$

The eigenenergies are:

$$E_{\pm} = \pm \sqrt{\delta^2 + \Omega^2 n}$$

with the corresponding eigenstates (dressed states)

$$\begin{split} |\varphi_{+}\rangle &= \sin \left(\theta_{n}\right)|-, n\rangle + \cos \left(\theta_{n}\right)|+, n-1\rangle \\ |\varphi_{-}\rangle &= \cos \left(\theta_{n}\right)|-, n\rangle - \sin \left(\theta_{n}\right)|+, n-1\rangle \\ \end{split}$$
with $\theta_{n} = \sqrt{\frac{E_{+}-\delta}{E_{+}+\delta}}$

2+1 DO

Now we need three anticommuting matrices and we choose

$$H^{(2)} = -c\sigma_x(p + imc^2\sigma_z x) - c\sigma_y(p + imc^2\sigma_z x) + mc^2\sigma_z$$

again, substituting with ladder operators of x and y and σ_{\pm} we end up with

$$H^{(2)} = 2\sqrt{mc^{2}\hbar\omega} \left(\sigma_{+}a_{r} + \sigma_{-}a_{r}^{\dagger} + mc^{2}\sigma_{3}\right)$$

where $a_r = (a_x + ia_y)/\sqrt{2}$, $a_r^{\dagger} = (a_x^{\dagger} - ia_y^{\dagger})/\sqrt{2}$. These are creation and annihilation operators and fulfill the canonical commutation rule. $[a_r, a_r^{\dagger}] = 1$ The mapping onto JC works here too, one has to identify $a_r, a_r^{\dagger} \rightarrow a, a^{\dagger}$ of the cavity mode and $= 2\sqrt{mc^2\hbar\omega} \rightarrow \Omega$. A. Bermudez et al Phys. Rev. A 76 041801(2007)

3+1 DO

Going back to the 3 + 1 case, we note that we can rewrite

$$H = mc^{2}\Sigma_{3} + \sqrt{2mc^{2}\hbar\omega} \left(\Sigma_{-}\boldsymbol{\sigma}\cdot\mathbf{a}^{\dagger} + \Sigma_{+}\boldsymbol{\sigma}\cdot\mathbf{a}\right)$$
(1)

 σ_{\pm} are raising and lowering operators, but we use capital letters here to distinguish them from the spin. \mathbf{J}^2 is a conserved quantity and additionally we have $\mathbf{a}^{\dagger}\mathbf{a} + \frac{1}{2}\Sigma_3$ the eigenstates can be expressed as a combination of $|\pm\rangle$ and $|N(I,1/2)jm\rangle$ being the eigenstates of \mathbf{J}^2 and the 3D harmonic oscillator.

$$j = l \pm 1/2$$
 $N = 2n_r + l = n_x + n_y + n_z$

Now we only need to find a good way of labeling these states...

Eigenstates

Taken from C. Quesne and M. Moshinsky, J. Phys. A **23** 2263 (1990)

Blocks of H in 3+1

The Hamiltonian can be diagonalized by blocks with two separate cases

$$j=l+1/2 \qquad \qquad J=l-1/2 \qquad \qquad H(n) = \begin{pmatrix} mc^2 & \eta\sqrt{2n} \\ \eta\sqrt{2n} & -mc^2 \end{pmatrix} \qquad H(\nu) = \begin{pmatrix} mc^2 & \eta\sqrt{2\nu+3} \\ \eta\sqrt{2\nu+3} & -mc^2 \end{pmatrix} \qquad \qquad n=0,1,2,\ldots \text{ for all } j \text{ Connection with } JC: \eta\sqrt{2} \to \Omega \qquad \qquad \nu = j - \frac{1}{2}, j + \frac{1}{2}, j + \frac{3}{2} \dots \text{ Connection with } JC: \text{ only if one uses one pair of eigenstates.} \qquad \eta = \sqrt{2mc^2\hbar\omega}$$

Mapping the DMO onto Jaynes-Cummings model

DO coupled to an external field

Two atoms in a cavity

Conclusions

Simplest interaction

The interaction is modeled as a potential that is summed to the total Hamiltonian

$$H \rightarrow H + \Phi$$

The simplest interaction we could possible imagine is a two level system which we call it simple a field. We want to conserve integrability, so we chose to be of the form Where A represents for each of the dimensional cases

$$\Phi = \chi (T_- A^{\dagger} + T_+ A) + \gamma T_3$$

where

- ▶ 1+1: *A* = *a*
- ▶ 2+1: $A = a_r$
- ► 3+1: $A = \boldsymbol{\sigma} \cdot \mathbf{a}$

Now the constant of motion for each case is given by

$$I = A^{\dagger}A + 1/2(\sigma_3 + T_3)$$

The coupled Hamiltonian

The full Hamiltonian with interaction is given by

$$H = \eta(\Sigma_{-}A^{\dagger} + \Sigma_{+}A) + \chi(T_{-}A^{\dagger} + \sigma_{+}A) + mc^{2}\Sigma_{3} + \gamma T_{3}$$

using the basis where $I = A^{\dagger}A + 1/2(\Sigma_3 + T_3)$

$$|n+1
angle|--
angle \ |n
angle|+-
angle \ |n
angle|-+
angle \ |n-1
angle|++
angle$$

The Hamiltonian is now block diagonal with its blocks given by 4x4 matrices

$$H^{(n)} = \begin{pmatrix} -mc^2 - \gamma & \chi & \eta\sqrt{n+1} & 0\\ \xi\sqrt{n+1} & \gamma - mc^2 & 0 & \eta\sqrt{n}\\ \eta\sqrt{n+1} & 0 & mc^2 - \gamma & \chi\sqrt{n}\\ 0 & \eta\sqrt{n} & \chi\sqrt{n} & mc^2 + \gamma \end{pmatrix}.$$

(Actually this Hamiltonian can represent two two-level atoms in a cavity)

Entanglemennt with the field

We use a product initial state formed by an eigenstate of the DO and a state of the field

$$|\Psi(t=0)
angle = |D0
angle(\cos{(\alpha)}|+
angle + \sin{(\alpha)}|-
angle)$$

Consider the reduced density matrix for the external field, which can be obtained by tracing over the DO degrees of freedom

$$ho = \operatorname{Tr}_{\mathrm{DO}} \left\{ \varrho(t) \right\}$$

where $\rho = |\Psi(t)\rangle \langle \Psi(t)|$. We evaluate the entanglement of the DO with the field using the purity, which can be obtained as

$$P = \mathrm{Tr}\{\rho^2\}$$

Some results

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Mapping the DMO onto Jaynes-Cummings model

DO coupled to an external field

Two atoms in a cavity

Conclusions

Two atoms inside a cavity

The last Hamiltonian is equivalent to the one of two atoms inside a cavity. This is a simple model that we shall use to study the evolution of entanglement in two different aspects:

- As a possible resource for implementing quantum information protocols. For this, entanglement is our allied.
- Entanglemnt of a central system to an environment, *i.e.* decoherence. This is an obstacle in quantum information protocols.

Here we distinguish between the two atoms (central system) and the cavity (environment).

Two interacting atoms in a cavity

We consider the Hamiltonian of two interacting atoms coupled to a cavity mode

$$H = \sum_{j=1}^{2} \left\{ \delta_{j} \sigma_{z}^{(j)} + g_{j} \left(\mathbf{a} \sigma_{+}^{(j)} + \mathbf{a}^{\dagger} \sigma_{-}^{(j)} \right) \right\} \\ + 2\kappa \left(\sigma_{-}^{(1)} \sigma_{+}^{(2)} + \sigma_{+}^{(1)} \sigma_{-}^{(2)} \right) + J \sigma_{z}^{(1)} \sigma_{z}^{(2)}$$

We consider the possibility of having different atoms, altough in this talk we will restric ourselves to identical atoms. The number of excitations is conserved

$$I = N + \frac{1}{2} \left(\sigma_z^{(1)} + \sigma_z^{(2)} \right) \tag{2}$$

The basis where I is diagonal

$$\begin{split} |\phi_1^{(n)}\rangle &= |n+1\rangle| --\rangle & |\phi_2^{(n)}\rangle &= |n\rangle| -+\rangle \\ |\phi_3^{(n)}\rangle &= |n\rangle| +-\rangle & |\phi_4^{(n)}\rangle &= |n-1\rangle| ++\rangle. \end{split}$$

Diagonalization of the Hamiltonian

In the previous basis where the number of excitations is conserved, the Hamiltonian is block diagonal

$$H = \begin{pmatrix} H^{(0)} & 0 & 0 & \dots \\ 0 & H^{(1)} & 0 & \dots \\ 0 & 0 & H^{(2)} & , \\ \vdots & \vdots & \ddots \end{pmatrix}$$

with each block given by

$$\mathcal{H}^{(n)} = \left(egin{array}{ccccc} J - \delta_1 - \delta_2 & g_2 \sqrt{n+1} & g_1 \sqrt{n+1} & 0 \ g_2 \sqrt{n+1} & \delta_2 - \delta_1 - J & 2\kappa & g_1 \sqrt{n} \ g_1 \sqrt{n+1} & 2\kappa & \delta_1 - \delta_2 - J & g_2 \sqrt{n} \ 0 & g_1 \sqrt{n} & g_2 \sqrt{n} & J + \delta_1 + \delta_2 \end{array}
ight).$$

Time evolution

We begin with the product state

$$|\Psi_{0}\rangle = |n\rangle \left(\cos\left(\alpha\right)|-+\rangle + \sin\left(\alpha\right)|+-\rangle\right).$$

at a time t the state vector can be found in

$$|\Psi(t)
angle = \sum_{l=1}^4 B_l^{(n)}(t) |\phi_l^{(n)}
angle$$

we trace over the oscillator degrees of freedom to get the reduced density matrix for the two atoms: $\rho = \operatorname{Tr}_n \{ |\Psi(t)\rangle \langle \Psi(t)| \} =$

$$= \begin{pmatrix} |B_1^{(n)}|^2 & 0 & 0 & 0\\ 0 & |B_2^{(n)}|^2 & (B_3^{(n)})^* B_2^{(n)} & 0\\ 0 & (B_2^{(n)})^* B_3^{(n)} & |B_3^{(n)}|^2 & 0\\ 0 & 0 & 0 & |B_4^{(n)}|^2 \end{pmatrix}$$

◆ロ > ◆母 > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Entanglement measures

To measure the entanglement between the two atoms (central system) and the cavity (environment) we use the purity $P = \text{Tr} \{\rho\}$ and found

$$P = |B_1^{(n)}|^4 + |B_4^{(n)}|^4 + \left(1 - |B_1^{(n)}|^2 - |B_4^{(n)}|^2\right)^2$$

To measure the entanglement between the atoms we use the Concurrence $C(\rho) = Max \{0, \lambda_1 - \lambda_2 - \lambda_3 - \lambda_4\}$, where λ_j are the eigenvalues of $\left(\rho \sigma_y^{(1)} \sigma_y^{(2)} \rho^* \sigma_y^{(1)} \sigma_y^{(2)}\right)^{1/2}$ in non-increasing order. In this case we find

$$C(\rho) = \operatorname{Max}\left\{0, \, 2|B_2^{(n)}||B_3^{(n)}| - 2|B_1^{(n)}||B_4^{(n)}|\right\}.$$

(日) (周) (三) (三) (三) (○) (○)

Concurrence and purity in time

$$C(t) = \max \left\{ 0, \sqrt{(\sin(2\alpha) - F(t))^2 + \cos^2(2\alpha)G^2(t) - \beta_n F(t)} \right\}$$

$$P(t) = 1 - 2F(t) + \gamma_n F^2(t).$$

where

$$F(t) = \frac{2n+1}{\omega_n^2} (1 + \sin(2\alpha)) \sin^2(\omega_n t)$$

$$G(t) = \frac{(\kappa - J) \cos((J + 3\kappa)t) \sin(\omega_n t)}{\omega_n} + \sin((J + 3\kappa)t) \cos(\omega_n t),$$

and

$$\omega_n = \sqrt{4n + 2 + (\kappa - J)^2}$$

$$\beta_n = \sqrt{\frac{4n^2 + 4n}{4n^2 + 4n + 1}}, \quad \gamma_n = \frac{6n^2 + 6n + 2}{4n^2 + 4n + 1},$$

Some results in time domain for n = 0 and identical atoms

In red, non-interacting atoms with an initial state determined by $\alpha = \pi/4$ *i.e.* a maximally entangled pure state. In blue the behavior for non-interacting atoms with an initial pure, but not maximally entangled state with $\alpha = \pi/20$. In black, the curve for two interacting atoms with the same initial state as in the blue dashed curve and $\kappa = 1.5$ and J = 0.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

CP-Plane

We will now proceed to visualize the dynamics in the plane concurrence vs purity. Analytic expressions can be found in the case without interaction

$$C_{\pm}^{(n)}(P;\alpha) = \operatorname{Max}\left\{0, \left|\sin\left(2\alpha\right) - f_{\pm}^{(n)}(P)\right| - \beta_n f_{\pm}^{(n)}(P)\right\}$$

with

$$f_{\pm}^{(n)}(P) = rac{1\pm\sqrt{1+\gamma_n(P-1)}}{\gamma_n}$$

٠

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

we'll show that these curves form a boundary for the interacting case.

CP-Plane n = 0 and identical atoms

In red non-interacting atoms with $\alpha = \pi/4$ *i.e.* a maximally entangled pure state. In blue, non-interacting atoms with an initial pure, but not maximally entangled state a) $\alpha = \pi/20$ and b) $\alpha = \pi/10$. In black, interacting atoms with $\alpha = \pi/20$ parametrized by time up to t = 20. a) $\kappa = 1.5$ and J = 0. b) $\kappa = 1.5$ and J = 0.87. The gray area indicates *CP* combinations that can not be obtained in physical states and its lower frontier corresponds to the maximally entangled mixed states.

$$C_{\pm}^{(0)}(P;\pi/4) = \frac{1}{2} \left(1 \mp \sqrt{2P - 1}\right)$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

CP-Plane n = 5

n = 5. a) $\alpha = \pi/20$ for the black and blue line and $\kappa = 5.7$ and J = 0.2 for the black line. b) $\alpha = -\pi/20$ for the black and blue line and $\kappa = J = 5\sqrt{4 \times 5 + 2}$ for the black line.

Mapping the DMO onto Jaynes-Cummings model

DO coupled to an external field

Two atoms in a cavity

Conclusions

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ の Q @

Summary and conclusions

- DMO
 - ► 1+1 and 2+1 DMO can be exactly mapped onto the JC model.
 - ▶ In the 3+1 case the degenerate part can be mapped.
 - ► If one uses only one pair of DMO eigenstates n + 1 the resulting Hamiltonian is a 2x2 matrix that can be connected to a corresponding JC model.
- DMO coupled to an isospin field
 - Choosing the interaction carefully, the system retains solvability.
 - The resulting model can be connected to a double JC model, or two two-level atoms inside a cavity.
- Two atoms in a cavity
 - The model is solvable and allows closed results for purity and concurrence.
 - we can characterize the dynamics in the CP-Plane.
 - is simple model to study entanglement, both as a resource and as a source of decoherence.

The results are taken from the following papers:

- JM Torres E. Sadurni and TH Seligman 2010 J. Phys. A: Math. Theor. 43 192002
- E Sadurní JM Torres and TH Seligman 2010 J. Phys. A: Math. Theor. 43 285204
- JM Torres, E Sadurni and TH Seligman, arXiv:1010.5229, in: Proceedings of Symmetries in Nature Symposium in Memoriam Marcos Moshinsky, Cuernavaca 2010, AIP Proceedings (in press).

Thank you for your attention.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●