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Dirac-Moshinsky oscillator
The Dirac-Moshinsky oscillator was introduced in 1989 by Marcos
Moshinsky and A. Szczepaniak as a solvable quantum relativistic
model which in the non-relativistic limit corresponds to the
hamiltonian of an harmonic oscillator with spin-orbit coupling
term. It can be written as

i~
∂|Ψ〉
∂t

=
(

cα · (p + imωβr) + mc2β
)

|Ψ〉

in what follows we shall use the following dirac matrices

α =

(

0 iσ

−iσ 0

)

β =

(

1 0
0 −1

)

and σ = (σx , σy , σz) a vector operator with the usual Pauli
matrices. and the state vector can be expressed as

|Ψ〉 =

(

|ψ1〉
|ψ2〉

)



Dirac-Moshinsky oscillator

We can write the Hamiltonian in matrix form

H =

(

mc21 c σ · (r + ip)
c σ · (r − ip) −mc21

)

to show that it couples |ψ1〉 and ψ2. Squaring it one obtains

E 2 − m2c4

c2
|ψ2〉 =

(

p2 + m2ω2r2 − 3~ωmc2 − 2mc2ωσ · L
)

|ψ2〉

in the non relativistic limit E = mc2 + ε and the term in the left
becomes approximately 2mc2ε, so the non-relativistic energy ε is
eigenvalue.



1 + 1 DO

Let us consider now a DO in one spatial dimension. Here we only
need two anticommuting matrices and we choose to write

H(1) = −cσy (p + imωσzx) + mc2σz

Using that the creation and annihilation operators
σ± = (σx ± σy)/2 and a =

√

mω
2~

x − i p
mω we end up with

H(1) =
√

2mc2~ω
(

σ+a + σ−a†
)

+ mc2σ3

This is the well known Jaynes-Cummings Hamiltonian in Quantum
optics.



Jaynes-Cummings model...
describes a two level atom interacting with one mode of the
electromagnetic field in a cavity.

The connection with the DO:

◮ a and a† with the creation and annihilation operators of one
electromagnetic mode.

◮ σ± with the rise and lowering operators for a two level atom.

◮ mc2 → δ : the detuning of the atomic transition from the
mode frequency.

◮

√
2mc2~ω → Ω : the coupling between atom and mode.



Solution to the JC and 1 + 1 DO
The solution to this system is well known

HJC = Ω(σ+a + σ+a†) + δσz

One notices that there is a conserved quantity I = a†a + σz/2, so
that the Hamiltonian can be diagonalized in the |−, n〉, |+, n − 1〉
basis in blockdiagonal 2x2 matrices.

HJC =

(

δ Ω
√

n

Ω
√

n −δ

)

The eigenenergies are:

E± = ±
√

δ2 + Ω2n

with the corresponding eigenstates (dressed states)

|ϕ+〉 = sin (θn)|−, n〉 + cos (θn)|+, n − 1〉
|ϕ−〉 = cos (θn)|−, n〉 − sin (θn)|+, n − 1〉

with θn =
√

E+−δ
E++δ



2+1 DO

Now we need three anticommuting matrices and we choose

H(2) = −cσx(p + imc2σzx) − cσy (p + imc2σzx) + mc2σz

again, substituting with ladder operators of x and y and σ± we
end up with

H(2) = 2
√

mc2~ω
(

σ+ar + σ−a†r + mc2σ3

)

where ar = (ax + iay)/
√

2, a
†
r = (a†x − ia

†
y)/

√
2. These are creation

and annihilation operators and fulfill the canonical commutation
rule. [ar , a

†
r ] = 1 The mapping onto JC works here too, one has to

identify ar , a
†
r → a, a† of the cavity mode and = 2

√
mc2~ω → Ω.

A. Bermudez et al Phys. Rev. A 76 041801(2007)



3+1 DO

Going back to the 3 + 1 case, we note that we can rewrite

H = mc2Σ3 +
√

2mc2~ω
(

Σ−σ · a† + Σ+σ · a
)

(1)

σ± are raising and lowering operators, but we use capital letters
here to distinguish them from the spin. J2 is a conserved quantity
and additionally we have a†a + 1

2Σ3 the eigenstates can be
expressed as a combination of |±〉 and |N(l , 1/2)jm〉 being the
eigenstates of J2 and the 3D harmonic oscillator.

j = l ± 1/2 N = 2nr + l = nx + ny + nz

Now we only need to find a good way of labeling these states. . .



Eigenstates

Taken from C. Quesne and M. Mos-

hinsky, J. Phys. A 23 2263 (1990)

The eigenstates in the 3 + 1 case
can be labeled as

E 2

mc2
= 1+2~ω

{

2ν + 3 j = l − 1/2
2n j = l + 1/2

2ν = N+j−3/2 2n = N−j−1/2



Blocks of H in 3 + 1

The Hamiltonian can be diagonalized by blocks with two separate
cases

j=l+1/2

H(n) =

(

mc2 η
√

2n

η
√

2n −mc2

)

n = 0, 1, 2, . . . for all j Connec-
tion with JC: η

√
2 → Ω

J=l-1/2

H(ν) =

(

mc2 η
√

2ν + 3
η
√

2ν + 3 −mc2

)

ν = j − 1
2 , j + 1

2 , j + 3
2 . . . Con-

nection with JC: only if one uses
one pair of eigenstates.

η =
√

2mc2~ω
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Simplest interaction
The interaction is modeled as a potential that is summed to the
total Hamiltonian

H → H + Φ

The simplest interaction we could possible imagine is a two level
system which we call it simple a field. We want to conserve
integrability, so we chose to be of the form
Where A represents for each of the dimensional cases

Φ = χ(T−A† + T+A) + γT3

where

◮ 1+1: A = a

◮ 2+1: A = ar

◮ 3+1: A = σ · a
Now the constant of motion for each case is given by

I = A†A + 1/2(σ3 + T3)



The coupled Hamiltonian

The full Hamiltonian with interaction is given by

H = η(Σ−A† + Σ+A) + χ(T−A† + σ+A) + mc2Σ3 + γT3

using the basis where I = A†A + 1/2(Σ3 + T3)

|n + 1〉|−−〉 |n〉|+−〉 |n〉|−+〉 |n − 1〉|++〉

The Hamiltonian is now block diagonal with its blocks given by
4x4 matrices

H(n) =









−mc2 − γ χ η
√

n + 1 0

ξ
√

n + 1 γ − mc2 0 η
√

n

η
√

n + 1 0 mc2 − γ χ
√

n

0 η
√

n χ
√

n mc2 + γ









.

(Actually this Hamiltonian can represent two two-level atoms in a cavity)



Entanglemennt with the field

We use a product initial state formed by an eigenstate of the DO
and a state of the field

|Ψ(t = 0)〉 = |D0〉(cos (α)|+〉 + sin (α)|−〉)

Consider the reduced density matrix for the external field, which
can be obtained by tracing over the DO degrees of freedom

ρ = TrDO {̺(t)}

where ̺ = |Ψ(t)〉〈Ψ(t)|. We evaluate the entanglement of the DO
with the field using the purity, which can be obtained as

P = Tr{ρ2}



Some results
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Two atoms inside a cavity

The last Hamiltonian is equivalent to the one of two atoms inside
a cavity. This is a simple model that we shall use to study the
evolution of entanglement in two different aspects:

◮ As a possible resource for implementing quantum information
protocols. For this, entanglement is our allied.

◮ Entanglemnt of a central system to an environment, i.e.

decoherence. This is an obstacle in quantum information
protocols.

Here we distinguish between the two atoms (central system) and
the cavity (environment).



Two interacting atoms in a cavity
We consider the Hamiltonian of two interacting atoms coupled to
a cavity mode

H =
∑2

j=1

{

δjσ
(j)
z + gj

(

a σ
(j)
+ + a†σ

(j)
−

)}

+2κ
(

σ
(1)
− σ

(2)
+ + σ

(1)
+ σ

(2)
−

)

+ Jσ
(1)
z σ

(2)
z

We consider the possibility of having different atoms, altough in
this talk we will restric ourselves to identical atoms.
The number of excitations is conserved

I = N +
1

2

(

σ
(1)
z + σ

(2)
z

)

(2)

The basis where I is diagonal

|φ(n)
1 〉 = |n + 1〉|−−〉 |φ(n)

2 〉 = |n〉|−+〉
|φ(n)

3 〉 = |n〉|+−〉 |φ(n)
4 〉 = |n − 1〉|++〉.



Diagonalization of the Hamiltonian

In the previous basis where the number of excitations is conserved,
the Hamiltonian is block diagonal

H =











H(0) 0 0 . . .

0 H(1) 0 . . .

0 0 H(2)

...
...

. . .

,











with each block given by

H(n) =









J − δ1 − δ2 g2

√
n + 1 g1

√
n + 1 0

g2

√
n + 1 δ2 − δ1 − J 2κ g1

√
n

g1

√
n + 1 2κ δ1 − δ2 − J g2

√
n

0 g1
√

n g2
√

n J + δ1 + δ2









.



Time evolution

We begin with the product state

|Ψ0〉 = |n〉 (cos (α)|−+〉 + sin (α)|+−〉) .

at a time t the state vector can be found in

|Ψ(t)〉 =
4

∑

l=1

B
(n)
l (t)|φ(n)

l 〉

we trace over the oscillator degrees of freedom to get the reduced
density matrix for the two atoms: ρ = Trn {|Ψ(t)〉〈Ψ(t)|} =

=















|B (n)
1 |2 0 0 0

0 |B (n)
2 |2

(

B
(n)
3

)∗

B
(n)
2 0

0
(

B
(n)
2

)∗

B
(n)
3 |B (n)

3 |2 0

0 0 0 |B (n)
4 |2















.



Entanglement measures

To measure the entanglement between the two atoms (central
system) and the cavity (environment) we use the purity
P = Tr {ρ} and found

P = |B (n)
1 |4 + |B (n)

4 |4 +
(

1 − |B (n)
1 |2 − |B (n)

4 |2
)2
.

To measure the entanglement between the atoms we use the
Concurrence C (ρ) = Max {0, λ1 − λ2 − λ3 − λ4}, where λj are

the eigenvalues of
(

ρ σ
(1)
y σ

(2)
y ρ∗ σ

(1)
y σ

(2)
y

)1/2
in non-increasing

order. In this case we find

C (ρ) = Max

{

0, 2|B (n)
2 ||B (n)

3 | − 2|B (n)
1 ||B (n)

4 |
}

.



Concurrence and purity in time

C (t) = Max

{

0,

√

(sin (2α) − F (t))2 + cos2 (2α)G 2(t) − βnF (t)
}

P(t) = 1 − 2F (t) + γnF
2(t).

where

F (t) = 2n+1
ω2

n
(1 + sin (2α)) sin2 (ωnt)

G (t) = (κ−J) cos ((J+3κ)t) sin (ωnt)
ωn

+

sin ((J + 3κ)t) cos (ωnt),

and

ωn =
√

4n + 2 + (κ− J)2

βn =
√

4n2+4n
4n2+4n+1

, γn = 6n2+6n+2
4n2+4n+1

,



Some results in time domain for n = 0 and identical atoms
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In red, non-interacting atoms with an initial state determined by α = π/4 i.e. a maximally entangled pure state. In

blue the behavior for non-interacting atoms with an initial pure, but not maximally entangled state with

α = π/20. In black, the curve for two interacting atoms with the same initial state as in the blue dashed curve

and κ = 1.5 and J = 0.



CP-Plane

We will now proceed to visualize the dynamics in the plane
concurrence vs purity. Analytic expressions can be found in the
case without interaction

C
(n)
± (P ;α) = Max

{

0,
∣

∣

∣
sin (2α) − f

(n)
± (P)

∣

∣

∣
− βn f

(n)
± (P)

}

with

f
(n)
± (P) =

1±
√

1+γn(P−1)

γn
.

we’ll show that these curves form a boundary for the interacting
case.



CP-Plane n = 0 and identical atoms
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In red non-interacting atoms with α = π/4 i.e. a maximally entangled pure state. In blue, non-interacting atoms

with an initial pure, but not maximally entangled state a) α = π/20 and b) α = π/10. In black, interacting

atoms with α = π/20 parametrized by time up to t = 20. a) κ = 1.5 and J = 0. b) κ = 1.5 and J = 0.87. The

gray area indicates CP combinations that can not be obtained in physical states and its lower frontier corresponds

to the maximally entangled mixed states.

C
(0)
± (P ;π/4) =

1

2

(

1 ∓
√

2P − 1
)



CP-Plane n = 5
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Summary and conclusions

◮ DMO
◮ 1+1 and 2+1 DMO can be exactly mapped onto the JC

model.
◮ In the 3+1 case the degenerate part can be mapped.
◮ If one uses only one pair of DMO eigenstates n + 1 the

resulting Hamiltonian is a 2x2 matrix that can be connected to
a corresponding JC model.

◮ DMO coupled to an isospin field
◮ Choosing the interaction carefully, the system retains

solvability.
◮ The resulting model can be connected to a double JC model,

or two two-level atoms inside a cavity.

◮ Two atoms in a cavity
◮ The model is solvable and allows closed results for purity and

concurrence.
◮ we can characterize the dynamics in the CP-Plane.
◮ is simple model to study entanglement, both as a resource and

as a source of decoherence.



The results are taken from the following papers:

◮ JM Torres E. Sadurni and TH Seligman 2010 J. Phys. A: Math. Theor. 43 192002

◮ E Sadurńı JM Torres and TH Seligman 2010 J. Phys. A: Math. Theor. 43 285204

◮ JM Torres, E Sadurni and TH Seligman, arXiv:1010.5229,
in: Proceedings of Symmetries in Nature Symposium in Memoriam Marcos Moshinsky, Cuernavaca 2010,
AIP Proceedings (in press).

Thank you for your attention.
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