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Was developed by: A.Shabat, A.Zhiber,

N.Ibragimov, A.Fokas, V.Sokolov, S.Svinolupov,

A.Mikhailov, R.Yamilov, V.Adler, P.Olver,

J.Sanders, J.P.Wang, V.Novikov, A.Meshkov,

D.Demskoy, H.Chen, Y.Lee, C.Liu,

I.Khabibullin, B.Magadeev, R.Heredero,

V.Marikhin ...

Definition. PDE is integrable if it possesses

infinitely many generalized infinitesimal sym-

metries.



Symmetries for ODEs.

Suppose we have a dynamical system

d ui
dt

= Fi(u1, . . . , un), i = 1, . . . , n . (1)

Definition. The dynamical system

d ui
dτ

= Gi(u1, . . . , un), i = 1, . . . , n . (2)

is called (infinitesimal) symmetry for (1) iff

(1) and (2) are compatible.

It means that for any initial data u0 there

exists a common solution u(t, τ) of systems

(1) and (2) such that u(0,0) = u0.



Evolution (1+1)-dimensional equations.

Consider evolution equation

ut = F (u, ux, uxx, . . . , un), ui =
∂iu

∂xi
. (3)

The generalized (higher) symmetry is an evo-

lution equation

uτ = G(u, ux, uxx, . . . , um),

that is compatible with (3).



Example 1. For any m equation uτ = um is

a symmetry for ut = un.

Example 2. The Burgers equation

ut = uxx + 2uux

has the following third order symmetry

uτ = uxxx + 3uuxx + 3u2
x + 3u2ux.

Example 3. The simplest higher symmetry

for the Korteweg-de Vries equation

ut = uxxx + 6uux

has the following form

uτ = uxxxxx + 10uuxxx + 20uxuxx + 30u2ux.



Why integrable equations possess higher

symmetries?

”Explanation”. A linear equation has in-

finitely many higher symmetries. Integrable

nonlinear equation is related to a linear one

by some transformation. The same transfor-

mation produces higher symmetries for non-

linear equation starting from symmetries of

the linear one.

For instance, the Burgers equation is inte-

grable because of the Cole-Hopf substitution

u =
vx

v
,

which relates the equation to vt = vxx. More-

over, the same substitution maps the third

order symmetry of the Burgers equation to

vτ = vxxx,

etc.



Some necessary integrability conditions, which

do not depend on symmetry orders were found

by Ibragimov-Shabat-VS. It was proved by

Svinolupov-VS that the same conditions ful-

filed if equation possesses infinitely many lo-

cal conservation laws.

The first classification result in frames of the

symmetry approach was:

Theorem. (Shabat-Zhiber 1979)

Nonlinear hyperbolic equation of the form

uxy = F (u)

possesses higher symmetries iff (up to scal-

ings and shifts)

F (u) = eu, F (u) = eu+e−u, or F (u) = eu+e−2u.



The complete classification of integrable hy-

perbolic equations of the form

uxy = F (u, ux, uy)

is an open problem till now.

Example:

uxy = S(u)
√

1− u2
x

√
1− u2

y ,

S′′ − 2S3 + c S = 0;



Theorem (Svinolupov-VS 1982). A com-

plete list (up to ”almost invertible” transfor-

mations) of equations of the form

ut = uxxx + f(uxx, ux, u) (4)

with infinite hierarchy of conservation laws

can be written as:

ut = uxxx + uux, KdV

ut = uxxx + u2 ux, mKdV

ut = uxxx −
1

2
u3
x + (αe2u + βe−2u)ux, CD1

ut = uxxx −
1

2
Q′′ ux +

3

8

(Q− u2
x)2
x

ux (Q− u2
x)
, CD2

ut = uxxx −
3

2

u2
xx +Q(u)

ux
KN ,

where Q′′′′′(u) = 0.



All integrable equations of the form

ut = F (uxx, ux, u, x, t)

were listed by Svinolupov 1985 and by VS-
Svinolupov 1991.

The answer is:

ut = u2 + 2uux + h(x),

ut = u2u2 − λxu1 + λu

ut = u2u2 + λu2

ut = u2u2 − λx2u1 + 3λxu

This is a complete list up to the contact
transformations

x̂ = ϕ(x, u, u1), û = ψ(x, u, u1),

ûi =
(

1
Dx(ϕ)Dx

)i
(ψ),

where

Dx(ϕ)
∂ψ

∂u1
= Dx(ψ)

∂ϕ

∂u1
.



All equations of the form

ut = u5 + F (u4, u3, u2, u1, u),

possessing higher conservation laws were found

by Drinfeld-VS-Svinolupov 1985.

Examples: Well-known equations

ut = u5 + 5uu3 + 5u1u2 + 5u2u1,

ut = u5 + 5uu3 + 25
2 u1u2 + 5u2u1

ut = u5 + 5(u1 − u2)u3 + 5u2
2 − 20uu1u2

−5u3
1 + 5u4u1

A new equation

ut = u5 + 5(u2 − u2
1 + λ1e

2u − λ2
2e
−4u)u3

−5u1u
2
2 + 15(λ1e

2u + 4λ2
2e
−4u)u1u2 + u5

1

−90λ2
2e
−4u u3

1 + 5(λ1e
2u − λ2

2e
−4u)2 u1



Classification of systems.

The most significant work has been done by

Mikhailov-Shabat-Yamilov 1987. All systems

of the form

ut = u2 + F (u, v, u1, v1),

vt = −v2 +G(u, v, u1, v1)

possessing higher conservation laws, were listed.

Example 1: Well-known NLS-equation

ut = u2 + u2v,

vt = −v2 − v2u,



Example 2. The Landau-Lifshitz equation

(after stereographic projection)

ut = u2 −
2u2

1

u+ v
−

4( p(u, v)u1 + r(u)v1 )

(u+ v)2

vt = −v2 +
2v2

1

u+ v
−

4( p(u, v)v1 + r(−v)u1 )

(u+ v)2
,

where

r(y) = c4y
4 + c3y

3 + c2y
2 + c1y + c0

and

p(u, v) = 2c4u
2v2 + c3(uv2 − vu2)−

2c2uv + c1(u− v) + 2c0.



Algebraic structures
and polynomial integrable models.

(Svinolupov)

The Burgers equation is given by

ut = uxx + 2uux.

Consider the following multi-component gen-
eralization:

uit = uixx + 2Cijku
kujx +Aijkmu

kujum,

where i, j, k = 1, . . . , N

Theorem 1 . This system has generalized
symmetries iff

Aijkm = 1
3(CijrC

r
km + CikrC

r
mj + CimrC

r
jk

−CirjC
r
km − C

i
rkC

r
mj − C

i
rmC

r
jk),

and

CijrC
r
km − C

i
krC

r
jm = CrjkC

i
rm − CrkjC

i
rm

for any i, j, k,m (summation w.r.t. r).



The latter formula means that Cijk are struc-

tural constants of a left-symmetric algebra!

The algebraic form of the system is

Ut = Uxx + 2U ◦Ux +U ◦ (U ◦U)− (U ◦U) ◦U,

where ◦ denotes the multiplication in a left-

symmetric algebra A, U =
∑
k u

kek and

ej ◦ ek = Cijkei.



Definition of left-symmetric algebra:

As(X,Y, Z) = As(Y,X,Z),

where

As(X,Y, Z) = (X ◦ Y ) ◦ Z −X ◦ (Y ◦ Z).

Example of left-symmetric algebra (VS).
The set of all N-dimensional vectors w.r.t.

X ◦ Y =< X,C > Y+ < X,Y > C,

where C is a fixed (constant) vector.

Examples of corresponding integrable sys-
tems: Svinolupov-VS 1994.

The matrix Burgers equation

ut = uxx + uux;

the vector Burgers equation

ut = uxx + 2 < u, ux > C + 2 < C, u > ux+
< u, u >< C, u > C− < u, u >< C,C > u;



One more example of left-symmetric al-

gebra (I.Golubchik-VS).

Let A be associative algebra and R : A → A

satisfies the modified classical Yang-Baxter

equation

R([R(x), y]− [R(y), x]) = [x, y] + [R(x), R(y)].

Then the multiplication

x ◦ y = [R(x), y]− (xy + yx)

is left-symmetric.



The KdV equation is given by

ut = uxxx + uux.

Theorem 2. If Cijk are structural constants
of any Jordan algebra then the KdV-type sys-
tem

uit = uixxx + Cijku
kujx, i, j, k = 1, . . . , N

possesses higher symmetries.

The algebraic form

Ut = Uxxx + U ◦ Ux,

where ◦ denotes the multiplication in a Jordan
algebra A.

Definition of Jordan algebra:

X ◦Y = Y ◦X, X2◦(Y ◦X) = (X2◦Y )◦X.

If ∗ is a multiplication in an associative alge-
bra then X ◦ Y = X ∗ Y + Y ∗ X is a Jordan
operation.



Examples of simple Jordan algebras.

a) The set of all N ×N matrices w.r.t.

X ◦ Y = XY + Y X

b) The set of all N-dimensional vectors w.r.t.

X◦Y =< X,C > Y+ < Y,C > X− < X,Y > C.

The corresponding integrable systems:

the matrix KdV-equation:

ut = uxxx + uux + uxu;

the vector KdV equation (Svinolupov-VS):

ut = uxxx+ < C, u > ux+ < C, ux > u− < u, ux > C;



Theorem 3. If Cijkm are structural constants
of any Jordan triple system then the mKdV-
type system

uit = uixxx + Cijkmu
kujumx , i, j, k = 1, . . . , N

possesses higher symmetries.

Theorem 4. If Cijkm are structural constants
of any Jordan triple system then the nonlinear
Schroedinger-type system

uit = uixx + Cijkmu
jvkum, i, j, k = 1, . . . , N

vit = −vixx − Cijkmv
jukvm

possesses higher symmetries.

Theorem 5. If Cijkm are structural constants
of any Jordan triple system then the nonlinear
derivative Schroedinger-type system

uit = uixx + Cijkm(ujvkum)x, i, j, k = 1, . . . , N

vit = −vixx − Cijkm(vjukvm)x

possesses higher symmetries.



Algebraic forms of the systems. The ”Jor-

dan” mKdV-equation

ut = uxxx + {u, u, ux},

the ”Jordan” nonlinear Schrödinger equation

ut = uxx + 2{v, u, v}, vt = −vxx − 2{u, v, u},

The ”Jordan” derivative nonlinear Schrödin-

ger equation

ut = uxx+2{v, u, v}x, vt = −vxx−2{u, v, u}x,

are integrable for any Jordan triple system.



Definition of Jordan triple system:

{X,Y, Z} = {Z, Y,X},

{X,Y, {V,W,Z}} − {V,W, {X,Y, Z}} =
{{X,Y, V },W,Z} − {V, {Y,X,W}, Z}.

Examples of simple triple Jordan systems.

a) The set of all N ×N matrices w.r.t.

{X,Y, Z} = XY Z + ZY X

b) The set of all N-dimensional vectors w.r.t.

{X,Y, Z} =< X,Y > Z+ < Y,Z > X− < X,Z > Y.

c) The set of all N-dimensional vectors w.r.t.

{X,Y, Z} =< X,Y > Z+ < Y,Z > X.



The corresponding integrable vector systems:

the matrix NLS equation

ut = u2 + 2uvu,
vt = −v2 − 2 vuv;

the vector NLS equation 1 (Manakov)

ut = u2+ < u, v > u,
vt = −v2− < u, v > v;

the vector NLS equation 2 (Kulish-Sklyanin)

ut = u2 + 2 < u, v > u− < u, u > v,
vt = −v2 − 2 < u, v > v+ < v, v > u;



Inverse elements in Jordan triple systems

and rational integrable models.

(Svinolupov - VS)

Let {X,Y, Z} be a Jordan triple system,

u =
∑
k

ukek.

Let φ(u) =
∑
k φ

k(u)ek be a solution of the

following overdetermined consistent system

∂φ

∂uk
= −{φ, ek, φ}. (5)

Denote

αu(X,Y ) = {X,φ(u), Y }

σu(X,Y, Z) = {X, {φ(u), Y, φ(u)}, Z}.



If {X,Y, Z} = 1
2(XY Z + ZY X), then

φ(u) = u−1.

For

{X,Y, Z) =< X,Y > Z+ < Y,Z > X− < X,Z > Y

we have

φ(u) =
u

‖u‖2
.



Class 3.1. Consider the equation

uxy = αu(ux, uy) (6)

In the matrix case this coincides with the

equation of the principal chiral field

uxy =
1

2
(uxu

−1uy + uyu
−1ux).

For this reason we will call (6) the Jordan

chiral field equation.

It is easy to verify that (6) admits the follow-

ing zero-curvature representation

Ψx =
2

(1− λ)
LuxΨ, Ψy =

2

(1 + λ)
LuyΨ.

Here we denote by LX the left multiplication

operator: LX(Y ) = αu(X,Y ).



Class 3.2. Consider the following equation

ut = uxxx − 3αu(ux, uxx) +
3

2
σu(ux, ux, ux)

The corresponding matrix and equation has

the following form:

ut = uxxx−
3

2
uxu
−1uxx−

3

2
uxxu

−1ux+
3

2
uxu
−1uxu

−1ux,

where u(x, t) is an m×m matrix.

Class 3.2. The following integrable equa-

tions of the Schwartz-KdV type are given by

ut = uxxx −
3

2
αux(uxx, uxx)

The matrix equation:

ut = uxxx −
3

2
uxxu

−1
x uxx



Class 3.3. The scalar representative of this

class is the Heisenberg model

ut = uxx −
2

u+ v
u2
x, vt = −vxx +

2

u+ v
v2
x.

The corresponding Jordan coupled equations

are given by

ut = uxx−2αu+v(ux, ux), vt = −vxx+2αu+v(vx, vx)

The matrix equation is of the form

ut = uxx − 2ux(u+ v)−1ux,

vt = −vxx + 2vx(u+ v)−1vx.



Equations of geometric type.

Consider multi-component systems of the form

uit = uixxx + aijk(~u)ujxu
k
xx + bijks(~u)ujxu

k
xu
s
x.

This class is invariant under point transfor-
mations: ~v = ~Ψ(~u). Under these transforma-
tions, the set of functions aijk(~u) are trans-
formed as components of an affine connec-
tion Γ.

It is convenient to rewrite the system as

uit = uixxx + 3αijku
j
xu
k
xx+(

∂αikm
∂uj

+ 2αijrα
r
km − α

i
rjα

r
km + βijkm

)
ujxu

k
xu
m
x ,

where βijkm = βikjm = βimkj, i.e.

β(X,Y, Z) = β(Y,X,Z) = β(X,Z, Y )

for any vectors X,Y, Z. The set of functions
βijkm are transformed just as components of
a tensor.



Let R and T be the curvature and torsion

tensors of Γ.

In order to formulate classification results, we

introduce the following tensor:

σ(X,Y, Z) = β(X,Y, Z)−
1

3
δ(X,Y, Z)+

1

3
δ(Z,X, Y ),

where

δ(X,Y, Z) = T (X,T (Y, Z)) +R(X,Y, Z)−

∇X(T (Y, Z)).

It follows from the Bianchi identity that

σ(X,Y, Z) = σ(Z, Y,X).

Theorem. The system is integrable iff

∇X[R(Y, Z, V )] = R(Y,X, T (Z, V )),

∇X [∇Y (T (Z, V ))− T (Y, T (Z, V ))−R(Y, Z, V )] = 0,



∇X(σ(Y, Z, V )) = 0,

T (X,σ(Y, Z, V )) + T (Z, σ(Y,X, V )) +

+T (Y, σ(X,V, Z)) + T (V, σ(X,Y, Z)) = 0,

and

σ(X,σ(Y, Z, V ),W )− σ(W,V, σ(X,Y, Z))+

σ(Z, Y, σ(X,V,W ))− σ(X,V, σ(Z, Y,W )) = 0.

If T = 0, we have the symmetric space with

covariantly constant deformation of a triple

Jordan system.

In the case T 6= 0, a generalization of the

symmetric spaces gives rise. We do not know

wether such affine connected spaces have been

considered by geometers.



Classification of integrable

matrix evolution equations.

Olver and VS listed integrable non-abelian

polynomial evolution equations having higher

symmetries. One of the non-abelian lists:

ut = uxxx + 3u2ux + 3uxu2,
ut = uxxx + 3uuxx − 3uxxu− 6uuxu,
ut = uxxx + 3u2

x.

Second order systems of NLS- and DNLS-

types also were listed and several new inte-

grable models were found.

Examples.

ut = uxx+2(u+v)ux, vt = −vxx+2vx(u+v);

ut = uxx + 2uxvu, vt = −vxx + 2vuvx.



Matrix Painleve equations:

uxx + 3u2 = xE + C,

uxx + 2u3 + xu = λE,

uxx +
1

x
ux = uxu

−1ux.



Classification of integrable
matrix ODEs.

Polynomial non-abelian ODEs have been con-
sidered by Mikhailov-VS, 2000 and some par-
tial classification results have been obtained.

For example, the following system

ut = v2, vt = u2

possesses infinitely many symmetries

uτi = Pi(u, v), vτi = Qi(u, v)

and first integrals

ρi = traceRi(u, v).

There exists two interesting integrable non-
abelian equations containing arbitrary con-
stant element C:

ut = Cu2 − u2C

and

ut = uCu2 − u2Cu.
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