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Main concepts

of Hamiltonian mechanics.



Let x1, . . . , xm be the coordinates. Any Poisson bracket
between functions f(x1, . . . , xm) and g(x1, . . . , xm) is given
by

{f, g} =
∑
i,j

Pi,j(x1, . . . , xm)
∂f

∂xi

∂g

∂xj
,

where Pi,j = {xi, xj}. The functions Pi,j are not arbi-
trary since by definition

{f, g} = −{g, f},

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0.

The corresponding dynamical systems are

dxi
dt

= {H,xi},

where H is a Hamiltonian function. A function K is an
integral of motion for this system iff {K, H} = 0.



If {J, f} = 0 for any f , then J is called a Casimir func-

tion of the Poisson bracket. The Casimir functions exist

if the bracket is degenerate (i.e. DetP = 0).

The coordinates for the standard symplectic manifold

are qi and pi, i = 1, . . . N . The Poisson bracket is given

by

{pi, pj} = {qi, qj} = 0, {pi, qj} = δi,j.

The corresponding dynamical system has the usual Hamil-

tonian form

dpi
dt

= −
∂H

∂qi
,

dqi
dt

=
∂H

∂pi
.

A change of variables is said to be canonical if it pre-

serves this form of the bracket.



For the spinning tops the Hamiltonian structure is de-

fined by a linear Poisson bracket, i.e. Pij = Ckijxk.

For the models of rigid body dynamics the Poisson

bracket is given by the following e(3) Poisson barcket:

{Mi,Mj} = εijkMk,

{Mi, γj} = εijk γk, {γi, γj} = 0.

Here Mi and γi are components of 3-dimensional vectors

M and Γ, εijk is the totally skew-symmetric tensor. This

bracket has the two Casimir functions

J1 = (M,Γ), J2 = |Γ|2,

where (·, ·) stands for the standard dot product in R3.



For the Liouville integrability of the equations of motion

only one additional integral functionally independent of

the Hamiltonian and the Casimir functions is necessary.

For the Kirchhoff equations describing the motion of

a rigid body in an ideal fluid there are classical inte-

grable cases found by Clebsch and Steklov-Lyapunov.

For these cases the Hamiltonian is of the form

H = a1M
2
1 + a2M

2
2 + a3M

2
3 +

2b1M1γ1 + 2b2M2γ2 + 2b3M3γ3+

c1γ
2
1 + c2γ

2
2 + c3γ

2
3.



For the Clebsch case the coefficients ai are arbitrary
and the remaining parameters satisfy the following con-
ditions

b1 = b2 = b3,

c1 − c2
a3

+
c3 − c1
a2

+
c2 − c3
a1

= 0.

In the Steklov-Lyapunov case ai are arbitrary and

b1 − b2
a3

+
b3 − b1
a2

+
b2 − b3
a1

= 0,

c1 −
(b2 − b3)2

a1
= c2 −

(b3 − b1)2

a2
= c3 −

(b1 − b2)2

a3
.

For both the Clebsch and Steklov-Lyapunov cases there
exists an additional quadratic integral.



State of the problem.



We consider the problem of description of pairs of func-

tions

H = ap2
1 + 2bp1p2 + cp2

2 + dp1 + ep2 + f,

K = Ap2
1 + 2Bp1p2 + Cp2

2 +Dp1 + Ep2 + F,

that commute with respect to the standard Poisson

bracket {pi, qj} = δij. Here N = 2 and the coefficients

are functions of the variables q1, q2. This problem was

considered by : Winternitz at all, Yehia, Ferapontov-

Fordy, ...



The class of such Hamiltonians is invariant with respect

to canonical transformations of the form

p1 = k1p̂1 + k2p̂2 + k3, p2 = k̄1p̂1 + k̄2p̂2 + k̄3,

q1 = φ, q2 = φ̄,

where ki, k̄i, φ, φ̄ are some functions of q̂1, q̂2.

Using these transformations, we can reduce b and B to

zero. After that we still have transformations with

q1 → φ(q1), q2 → φ̄(q2)

and shifts

p1 → p1 +
∂F (q1, q2)

∂q1
, p2 → p2 +

∂F (q1, q2)

∂q2
.



Canonical form for the
quasi-Stäckel Hamiltonians.

For the Hamiltonians of the form

H = ap2
1 + cp2

2 + dp1 + ep2 + f, (1)

K = Ap2
1 + Cp2

2 +Dp1 + Ep2 + F (2)

it follows from {H,K} = 0 that

a =
S1(q1)

σ1(q1)− σ2(q2)
, c =

S2(q2)

σ2(q2)− σ1(q1)

for some functions Si, σi. If σ′1 6= 0, σ′2 6= 0, we may
reduce σ1 and σ2 to q1 and q2.

Such a Hamiltonian H is called quasi-Stäckel Hamilto-
nian.



Theorem 1. Any pair H,K is equivalent to

H =
U1 − U2

q1 − q2
, K =

q2U1 − q1U2

q1 − q2
, (3)

where

U1 = S1(q1) p2
1 +

√
S1(q1)S2(q2)Zq1

(q1 − q2)
p2−

S1(q1)Z2
q1

4(q1 − q2)2
+ V1(q1, q2),

U2 = S2(q2) p2
2 −

√
S1(q1)S2(q2)Zq2

(q1 − q2)
p1−

S2(q2)Z2
q2

4(q2 − q1)2
+ V2(q1, q2),



and

V1 =
1

2

√
S1(q1) ∂q1

√S1(q1)
Z2
q1

q1 − q2

+ f1(q1),

V2 =
1

2

√
S2(q2) ∂q2

√S2(q2)
Z2
q2

q2 − q1

+ f2(q2).

for some functions Z(q1, q2), Si(qi) and fi(qi).

The Poisson bracket {H,K} is equal to zero if and only
if

∂2Z

∂q1∂q2
=

1

2(q2 − q1)

(
∂Z

∂q1
−
∂Z

∂q2

)
(4)

and (
Zq1

∂

∂q2
− Zq2

∂

∂q1

) (
V1 − V2

q1 − q2

)
= 0. (5)



The Stäckel Hamiltonians correspond to the trivial so-

lution Z = 0. In this case

Ui = Si(qi)p
2
i + fi(qi).

Here the variables are separated and the action function

σ(q1, q2) can be found in the form σ = σ1(q1) + σ2(q2),

where

Si(qi)(σ′i)
2 + fi(qi)− e1qi − c = 0.



Consider the following non-trivial case.

Example 1. There exists the following solution of (4),

(5):

Z(x, y) = x+ y, S1(x) = S2(x) =
6∑
i=0

cix
i,

f1(x) = f2(x) = −
3

4
c6x

4 −
1

2
c5x

3 +
2∑
i=0

kix
i,

where ci, ki are arbitrary constants.

It turns out that the Clebsch and the so(4) Schottky-

Manakov spinning tops are special cases of this model.



The Clebsch spinning top.

The Clebsch spinning top is defined by the Hamiltonian

H =
1

2
(M2

1 +M2
2 +M2

3 ) +
1

2
(λ1γ

2
1 + λ2γ

2
2 + λ3γ

2
3)

which commutes with respect to the e(3)-Poisson brack-
ets

{Mi,Mj} = i εijkMk, {γi, γj} = 0,

{Mi, γj} = i εijkγk

with the first integral

K = (λ1M
2
1 + λ2M

2
2 + λ3M

2
3 )−

λ1λ2λ3

(
γ2

1

λ1
+
γ2

2

λ2
+
γ2

3

λ3

)
.



Let us fix the values of the Casimir functions as follows

γ2
1 + γ2

2 + γ2
3 = a2, M1γ1 +M2γ2 +M3γ3 = l.

Using the parameterization

M1 =
1

2
p1(1− q2

1) +
1

2
p2(1− q2

2) +
l

a
q1,

M2 =
i

2
p1(1 + q2

1) +
i

2
p2(1 + q2

2)− i
l

a
q1,

M3 = p1q1 + p2q2 −
l

a
,

and

γ1 = a
1− q1q2

q1 − q2
, γ2 = ia

1 + q1q2

q1 − q2
, γ3 = a

q1 + q2

q1 − q2
,



we can express H and K in terms of canonically conju-

gated variables p1, q1, p2, q2. As the result, we get the

Hamiltonian H from Example 1 with

S(x) = 4(x− λ1)(x− λ2)(x− λ3).



Classification.



To solve the classification problem, it suffices to inves-
tigate the compatibility conditions equations:

Zx,y =
Zx − Zy
2(x− y)

and (
Zx

∂

∂y
− Zy

∂

∂x

) (
V1 − V2

x− y

)
= 0,

where

V1 =
1

2

√
S1(x) ∂x

(√
S1(x)

Z2
x

x− y

)
+ f1(x),

V2 =
1

2

√
S2(y) ∂y

√S2(y)
Z2
y

y − x

+ f2(y).

Here and below we use the notation

x = q1, y = q2.



Let us investigate the analytic behavior of solutions of

the system (4), (5) at x− y = 0.

Lemma 1. The general solution of the Euler-Darboux

equation (4) has the following decomposition:

Z(x, y) = A+ Log(x− y)B, (6)

A =
∞∑
0

ai(x+ y) (x− y)2i,

B =
∞∑
0

bi(x+ y) (x− y)2i.

In this formula a0 and a1 are arbitrary functions.



Substituting (6) into (5), we immediately obtain

Proposition 1. If series (6) satisfies (5), then B = 0.

Lemma 2. Any solution of the equations (4) with
B = 0 is given by

Z(x, y) = z0 + δ (x+ y)+

(x− y)2
∞∑
k=0

g(2k)(x+ y)

2(2k)k!(k + 1)!
(x− y)2k,

where g(x) is arbitrary function and z0, δ are arbitrary
constants. Without loss of generality we put z0 = 0.
The parameter δ, plays a very important role in the
classification of quasi-Stäckel Hamiltonians.

The function g(x) is called generating function for Z(x, y).



Let us describe in a close form all functions Z corre-

sponding to rational generating functions g.

Taking g(x) = xn, we obtain the infinite sequence of

polynomial solutions Zn for (4). In particular,

g(x) = 1 ⇐⇒ Z0(x, y) = (x− y)2

g(x) = x ⇐⇒ Z1(x, y) =
1

2
(x+ y)(x− y)2.

This sequence can be constructed with the help of the

”arising” operator

x2 ∂

∂x
+ y2 ∂

∂y
−

1

2
(x+ y)

acting on Z0.



Moreover,

gµ(x) =
1

4

1

x− 2µ
⇐⇒

Zµ(x, y) =
√

(µ− x)(µ− y) +
1

2
(x+ y).

The solution corresponding to the pole of order n ≥ 2
can be obtained by differentiating of the latter formula
with respect to µ.

Thus, we have constructed explicitly a solution Z with
arbitrary rational generating function

g(x) =
∑
i

cix
i +

∑
i,j

dij(x− µi)−j.

Conjecture 1. For any integrable quasi-Stäckel Hamil-
tonian the generating function is rational.



Classification results.

Theorem 2 (non-symmetric case.) Suppose
S1(x) 6= S2(x), or f1(x) 6= f2(x); then

g =
1

H
, S1,2 = W H ±MH3/2,

f1,2 = −
4W

H
∓ 2MH−1/2 ± aH1/2,

where g is the generating function of Z,

W (x) = w3x
3 + w2x

2 + w1x+ w0,

H(x) = h2x
2 + h1x+ h0,

M(x) = m2x
2 +m1x+m0.

Here wi, hi,mi, a are arbitrary constants.



Consider now the symmetric case S1 = S2, f1 = f2.

Theorem 3. Suppose δ = 0. Then in the symmetric

case the functions Z, S = S1, f = f1 satisfy (4), (5) iff

g =
G

S
, f = −

4G2

S
,

where

S(x) = s5x
5 + s4x

4 + s3x
3 + s2x

2 + s1x+ s0,

G(x) = g3x
3 + g2x

2 + g1x+ g0.

Here si, gi are arbitrary constants.



All classification results have been obtained by substi-

tuting of the series

Z(x, y) = z0 + δ (x+ y)+

(x− y)2
∞∑
k=0

g(2k)(x+ y)

2(2k)k!(k + 1)!
(x− y)2k

to (5), equating the coefficients of different powers of

x − y and analyzing the overdetermined system of dif-

ferential equations with respect to the functions g, Si, fi
thus obtained.

Thus, to complete the classification of the quasi-Stäckel

Hamiltonians, we must investigate the symmetric case

with δ 6= 0 (see, for instance, Example 1). Some exam-

ples of such Hamiltonians can be described as follows.



Generalized Manakov case.

The most general pair K,H of this kind can be written

as

H =
[h(y)U1 − h(x)U2] + h(x)a(y)− h(y)a(x)

h(y)k(x)− h(x)k(y)
,

K =
[k(y)U1 − k(x)U2] + k(x)a(y)− k(y)a(x)

h(y)k(x)− h(x)k(y)
,

where x = q1, y = q2,

U1 = S(x)p2
1 + δ

√
S(x)S(y)

(x− y)
p2 −

δ2

40
S′′(x)+

δ2

4

S′(x)

(x− y)
−

3δ2

4

S(x)

(x− y)2
,



U2 can be obtained from U1 by x↔ y, p1 ↔ p2, U1 ↔
U2. Here S(x) is an arbitrary sixth degree polynomial, δ
is a parameter,

h(x) = h2x
2 + h1x+ h0, k(x) = k2x

2 + k1x+ k0,

a(x) = a2x
2 + a1x+ a0

are arbitrary polynomials such that h(x) 6= const k(x). If
h(x) = 1, k(x) = x it coincides with Example 1.

For the above model the canonical forms correspond to

Z(x, y) =
√

(x− µ1)(y − µ1) +
√

(x− µ2)(y − µ2),

Z(x, y) =
√

(x− µ1)(y − µ1) +
1

2
(x+ y),

Z(x, y) = x+ y.



Deformed Steklov case.

A polynomial deformation of the Hamiltonian from The-

orem 3 with respect to δ is given by

g =
G̃

S
, G̃ = G−

δ

10
S′,

f = −
4G̃2

S
−

4δ

3
G̃′ −

δ2

12
S′′,

S(x) = s5x
5 + s4x

4 + s3x
3 + s2x

2 + s1x+ s0,

G(x) = g3x
3 + g2x

2 + g1x+ g0.



In the generic case

Z(x, y) =
5∑
i=1

νi

√
(µi − x)(µi − y),

f(x) = −
1

16

5∑
i=1

ν2
i S
′(µi)

x− µi
+ k1x+ k0,

where νi, µi, k1, k0 are arbitrary constants.

For the so(4)-Steklov case s5 = s0 = 0, s4, . . . , s1 are

arbitrary and

g(x) =
4j2
x
, δ = −

j1 + j2
2

,

where j2
i are values of the Casimir functions.



Conjecture 2. Any quasi-Stäckel Hamiltonian with δ 6=
0 belongs to one of the two classes described above.



The Hamilton-Jacobi equation

and separation of variables.



Consider the system of two stationary Hamilton-Jacobi

equations

H

(
∂S

∂q1
,
∂S

∂q2
, q1, q2

)
= e1

K

(
∂S

∂q1
,
∂S

∂q2
, q1, q2

)
= e2.

Resolving this system w.r.t. first derivatives, we get a

system of equations of the form

∂S

∂qi
= Φi(q1, q2, e1, e2). (7)



The system (7) is compatible i.e.

∂Φ1

∂q2
=
∂Φ2

∂q1
.

The solution

S(q1, q2, e1, e2)

of system (7) is called the action function.

Differentiating S w.r.t. e1, e2, we obtain the coordinate

functions q1(t), q2(t) of initial Hamiltonian system from

d

(
∂S

∂e1

)
= d t, d

(
∂S

∂e2

)
= 0.



The action function for
quasi-Stäckel Hamiltonians.

Let

u =
1

2

Zx

x− y

√
y − ξ
x− ξ

, v = −
1

2

Zy

x− y

√
x− ξ
y − ξ

,

where ξ is a parameter. If Z satisfies the Euler-Darboux
equation, then ∂u

∂y = ∂v
∂x. Define σ(x, y, ξ) as a solution

of
∂σ

∂x
= u,

∂σ

∂y
= v.

For example, in the generalized Steklov case σ(x, y, ξ)
equals to

−
1

2

5∑
i=1

νi log

√
x− ξ

√
y − µi +

√
y − ξ

√
x− µi√

x− y
√
µi − ξ

.



Consider the expression

Ψ(x, y, ξ) = −e2+e1ξ+
y − ξ
x− y

(
V1(x, y)−

S(x)Z2
x

4(x− ξ)(x− y)

)

−
x− ξ
x− y

V2(x, y) +
S(y)Z2

y

4(y − ξ)(x− y)

 .

Theorem. For any pair of quasi-Stäckel Hamiltonians

the expression Ψ(x, y, ξ) is a function of two variables ξ

and Y =
∂σ

∂ξ
only.

By this theorem, the equation Ψ(x, y, ξ) = 0 defines an

algebraic curve φ(ξ, Y ) = 0. Let ξk(x, y), k = 1,2,3, be

the roots of the qubic equation Ψ(x, y, ξ) = 0.



Theorem. The action function S has the following

form

S(x, y) =
3∑

k=1

σ(x, y, ξk)−
ξk∫
Y (ξ) dξ

 ,
where Y (ξ) is the algebraic function on the curve

φ(ξ, Y ) = 0.



The action function

for the Example 1.

Example 1. There exists the following solution of (4),

(5):

Z(x, y) = x+ y, S1(x) = S2(x) =
6∑
i=0

cix
i,

f1(x) = f2(x) = −
3

4
c6x

4 −
1

2
c5x

3 +
2∑
i=0

kix
i,

where ci, ki are arbitrary constants.



In the case of Example 1 the curve is given by

φ(ξ, Y ) = 64c6Y
6 + l(ξ)Y 4 + k(ξ)Y 2 − S(ξ) = 0,

where

k(ξ) =
2

5
S′′(ξ)−

(
24c4

5
− 16k2

)
ξ2 + 16e1ξ − 16e2,

l(ξ) =
2

3
SIV (ξ)− 2k′′(ξ).

In the generic case this is a non-hyperelliptic curve of

genus 4.

Let P (ξ, η) = 0 be an arbitrary cubic. Then φ(ξ, Y ) = 0

is a double cover over the cubic defined by η = ξ2−4Y 2.

The roots of S are branching points of the cover.



The system of equations

φ(ξ, Y ) = 0, Y 2 =
1

4
(ξ − x)(ξ − y)

is equivalent to a cubic equation with roots ξi(x, y), i =

1,2,3.

Theorem. The action function is given by

S =
1

4

3∑
n=1

2 arctanh
ξn − 1

2(x+ y)

2Y (ξn)
−

ξn∫
dξ

Y (ξ)





Differentiating the action with respect to the parame-

ters, we get

dt =
3∑

n=1

ω1(ξn), 0 =
3∑

n=1

ω2(ξn).

Here ω1, ω2 belong to a basis

ω1(ξ) =
dξ

Z
, ω2(ξ) =

ξ dξ

Z
,

ω3(ξ) =
(ξ2 − 4Y 2)dξ

Z
, ω4(ξ) =

Y dξ

Z

of holomorphic differentials on the curve φ(ξ, Y ) = 0.

Here Z = ∂φ
∂Y .



The functions Y (ξi) are linked by one constraint which

can be rewritten in the variables (ξ, η) as

η1(ξ2 − ξ3) + η2(ξ3 − ξ1) + η3(ξ1 − ξ2) = 0.

This means that the corresponding points (ξi, ηi) be-

longs to the intersection of the cubic and the straight

line η = ξ(x+ y)− xy.


