Solvability of the E_{8} trigonometric system

Juan Carlos López Vieyra*
Instituto de Ciencias Nucleares, UNAM

Recent Developments in Integrable Systems and their Transition to Chaos Symposium in Honor of
Francesco Calogero on the Occasion of his 75th Birthday

[^0]
Olshanetsky-Perelomov Hamiltonians

```
Olshanetsky-
Perelomov
Hamiltonians
E8 trig Hamiltonian
FTI
h}\mp@subsup{E}{8}{
First Eigenfunctions Thanks
```


Olshanetsky-Perelomov Hamiltonians

- 80's: Discovery of a remarkable family of quantum Hamiltonians associated to the root systems of the classical (A_{n} (Calogero-Sutherland) , B_{n}, C_{n}, D_{n}) and exceptional $\left(G_{2}, F_{4}, E_{6,7,8}\right)$ Lie algebras, and non-crystalographic $\left(H_{3,4}, I_{2}(k)\right)$ root systems

Olshanetsky-Perelomov Hamiltonians

Olshanetsky-
Perelomov
Hamiltonians
E_{8} trig Hamiltonian
FTI
$h_{E_{8}}$
First Eigenfunctions Thanks

- 80's: Discovery of a remarkable family of quantum Hamiltonians associated to the root systems of the classical (A_{n} (Calogero-Sutherland), B_{n}, C_{n}, D_{n}) and exceptional ($G_{2}, F_{4}, E_{6,7,8}$) Lie algebras, and non-crystalographic ($H_{3,4}, I_{2}(k)$) root systems
- They have the property of complete integrability and exact solvability

Olshanetsky-Perelomov Hamiltonians

Olshanetsky-
Perelomov

Hamiltonians

E_{8} trig Hamiltonian
FTI
$h_{E_{8}}$
First Eigenfunctions Thanks

- 80's: Discovery of a remarkable family of quantum Hamiltonians associated to the root systems of the classical (A_{n} (Calogero-Sutherland), B_{n}, C_{n}, D_{n}) and exceptional ($G_{2}, F_{4}, E_{6,7,8}$) Lie algebras, and non-crystalographic ($H_{3,4}, I_{2}(k)$) root systems
- They have the property of complete integrability and exact solvability
- So far, any quantum O-P Hamiltonian, written in certain variables, has the form of a second order differential operator with polynomial coefficients (algebraic form)
The goal is to check it for E_{8}-trigonometric model

Olshanetsky-Perelomov Hamiltonians

- 80's: Discovery of a remarkable family of quantum

Olshanetsky-
Perelomov
Hamiltonians
E_{8} trig Hamiltonian
FTI
$h_{E_{8}}$
First Eigenfunctions Thanks Hamiltonians associated to the root systems of the classical $\left(A_{n}\right.$ (Calogero-Sutherland) $\left., B_{n}, C_{n}, D_{n}\right)$ and exceptional $\left(G_{2}, F_{4}, E_{6,7,8}\right)$ Lie algebras, and non-crystalographic $\left(H_{3,4}, I_{2}(k)\right)$ root systems

- They have the property of complete integrability and exact solvability
- So far, any quantum O-P Hamiltonian, written in certain variables, has the form of a second order differential operator with polynomial coefficients (algebraic form) The goal is to check it for E_{8}-trigonometric model
- The eigenfunctions of the (algebraic) Hamiltonian are always polynomials

Olshanetsky

Perelomov
Hamiltonians
E_{8} trig Hamiltonian FTI
$h_{E_{8}}$
First Eigenfunctions Thanks

Olshanetsky-Perelomov Hamiltonians

- 80's: Discovery of a remarkable family of quantum Hamiltonians associated to the root systems of the classical (A_{n} (Calogero-Sutherland), B_{n}, C_{n}, D_{n}) and exceptional $\left(G_{2}, F_{4}, E_{6,7,8}\right)$ Lie algebras, and non-crystalographic ($H_{3,4}, I_{2}(k)$) root systems
- They have the property of complete integrability and exact solvability
- So far, any quantum O-P Hamiltonian, written in certain variables, has the form of a second order differential operator with polynomial coefficients (algebraic form)
The goal is to check it for E_{8}-trigonometric model
- The eigenfunctions of the (algebraic) Hamiltonian are always polynomials
- The eigenvalue is a second-degree polynomial in the quantum numbers
E_{8} trig Hamiltonian in 8-dimensional Euclidean space with coords $x_{1}, x_{2}, \ldots x_{8}$

Olshanetsky-
h_{E}
First Eigenfunctions Thanks

$$
\mathcal{H}_{E_{8}}=-\frac{1}{2} \Delta^{(8)}+\frac{g \beta^{2}}{4} \sum_{j<i=1}^{8}\left[\frac{1}{\sin ^{2} \frac{\beta}{2}\left(x_{i}+x_{j}\right)}+\frac{1}{\sin ^{2} \frac{\beta}{2}\left(x_{i}-x_{j}\right)}\right]
$$

$$
+\frac{g \beta^{2}}{4} \sum_{\left\{\nu_{j}\right\}} \frac{1}{\left[\sin ^{2} \frac{\beta}{4}\left(x_{8}+\sum_{j=1}^{7}(-1)^{\nu_{j}} x_{j}\right)\right]}, \nu_{j}=0,1, \sum_{j=1}^{7} \nu_{j} \text { is even }
$$

E_{8} trig Hamiltonian in 8-dimensional Euclidean space with coords $x_{1}, x_{2}, \ldots x_{8}$

Olshanetsky-
$h_{E_{8}}$
First Eigenfunctions Thanks

$$
\mathcal{H}_{E_{8}}=-\frac{1}{2} \Delta^{(8)}+\frac{g \beta^{2}}{4} \sum_{j<i=1}^{8}\left[\frac{1}{\sin ^{2} \frac{\beta}{2}\left(x_{i}+x_{j}\right)}+\frac{1}{\sin ^{2} \frac{\beta}{2}\left(x_{i}-x_{j}\right)}\right]
$$

$$
+\frac{g \beta^{2}}{4} \sum_{\left\{\nu_{j}\right\}} \frac{1}{\left[\sin ^{2} \frac{\beta}{4}\left(x_{8}+\sum_{j=1}^{7}(-1)^{\nu_{j}} x_{j}\right)\right]}, \nu_{j}=0,1, \sum_{j=1}^{7} \nu_{j} \text { is even }
$$

- $g=\nu(\nu-1)>-\frac{1}{4}\left(\right.$ coupl const.) $\beta \in \mathbb{R}$, param $\propto(\text { period })^{-1}$.
E_{8} trig Hamiltonian in 8-dimensional Euclidean space with coords $x_{1}, x_{2}, \ldots x_{8}$

Olshanetsky-
$h_{E_{8}}$
First Eigenfunctions Thanks

$$
\mathcal{H}_{E_{8}}=-\frac{1}{2} \Delta^{(8)}+\frac{g \beta^{2}}{4} \sum_{j<i=1}^{8}\left[\frac{1}{\sin ^{2} \frac{\beta}{2}\left(x_{i}+x_{j}\right)}+\frac{1}{\sin ^{2} \frac{\beta}{2}\left(x_{i}-x_{j}\right)}\right]
$$

$$
+\frac{g \beta^{2}}{4} \sum_{\left\{\nu_{j}\right\}} \frac{1}{\left[\sin ^{2} \frac{\beta}{4}\left(x_{8}+\sum_{j=1}^{7}(-1)^{\nu_{j}} x_{j}\right)\right]}, \nu_{j}=0,1, \sum_{j=1}^{7} \nu_{j} \text { is even }
$$

- $g=\nu(\nu-1)>-\frac{1}{4}$ (coupl const.) $\beta \in \mathbb{R}$, param $\propto(\text { period })^{-1}$.
- Symmetry: E_{8} Weyl group (order $=696729600$)
E_{8} trig Hamiltonian in 8-dimensional Euclidean space with coords $x_{1}, x_{2}, \ldots x_{8}$

Olshanetsky-

$$
\mathcal{H}_{E_{8}}=-\frac{1}{2} \Delta^{(8)}+\frac{g \beta^{2}}{4} \sum_{j<i=1}^{8}\left[\frac{1}{\sin ^{2} \frac{\beta}{2}\left(x_{i}+x_{j}\right)}+\frac{1}{\sin ^{2} \frac{\beta}{2}\left(x_{i}-x_{j}\right)}\right]
$$

$$
+\frac{g \beta^{2}}{4} \sum_{\left\{\nu_{j}\right\}} \frac{1}{\left[\sin ^{2} \frac{\beta}{4}\left(x_{8}+\sum_{j=1}^{7}(-1)^{\nu_{j}} x_{j}\right)\right]}, \nu_{j}=0,1, \sum_{j=1}^{7} \nu_{j} \text { is even }
$$

- $g=\nu(\nu-1)>-\frac{1}{4}$ (coupl const.) $\beta \in \mathbb{R}$, param $\propto(\text { period })^{-1}$.
- Symmetry: E_{8} Weyl group (order $=696729600$)
- The configuration space is the principal E_{8} Weyl alcove.
E_{8} trig Hamiltonian in 8-dimensional Euclidean space with coords $x_{1}, x_{2}, \ldots x_{8}$

Olshanetsky-

$$
\mathcal{H}_{E_{8}}=-\frac{1}{2} \Delta^{(8)}+\frac{g \beta^{2}}{4} \sum_{j<i=1}^{8}\left[\frac{1}{\sin ^{2} \frac{\beta}{2}\left(x_{i}+x_{j}\right)}+\frac{1}{\sin ^{2} \frac{\beta}{2}\left(x_{i}-x_{j}\right)}\right]
$$

$$
+\frac{g \beta^{2}}{4} \sum_{\left\{\nu_{j}\right\}} \frac{1}{\left[\sin ^{2} \frac{\beta}{4}\left(x_{8}+\sum_{j=1}^{7}(-1)^{\nu_{j}} x_{j}\right)\right]}, \nu_{j}=0,1, \sum_{j=1}^{7} \nu_{j} \text { is even }
$$

- $g=\nu(\nu-1)>-\frac{1}{4}$ (coupl const.) $\beta \in \mathbb{R}$, param $\propto(\text { period })^{-1}$.
- Symmetry: E_{8} Weyl group (order $=696729600$)
- The configuration space is the principal E_{8} Weyl alcove.
- Ground State: $\Psi_{0}=\left(\Delta_{+}^{(8)} \Delta_{-}^{(8)}\right)^{\nu} \Delta_{E_{8}}^{\nu}, \quad E_{0}=310 \beta^{2} \nu^{2}$,
E_{8} trig Hamiltonian in 8-dimensional Euclidean space with coords $x_{1}, x_{2}, \ldots x_{8}$

Olshanetsky-

$$
\mathcal{H}_{E_{8}}=-\frac{1}{2} \Delta^{(8)}+\frac{g \beta^{2}}{4} \sum_{j<i=1}^{8}\left[\frac{1}{\sin ^{2} \frac{\beta}{2}\left(x_{i}+x_{j}\right)}+\frac{1}{\sin ^{2} \frac{\beta}{2}\left(x_{i}-x_{j}\right)}\right]
$$

$+\frac{g \beta^{2}}{4} \sum_{\left\{\nu_{j}\right\}} \frac{1}{\left[\sin ^{2} \frac{\beta}{4}\left(x_{8}+\sum_{j=1}^{7}(-1)^{\nu_{j}} x_{j}\right)\right]}, \nu_{j}=0,1, \sum_{j=1}^{7} \nu_{j}$ is even

- $g=\nu(\nu-1)>-\frac{1}{4}$ (coupl const.) $\beta \in \mathbb{R}$, param $\propto(\text { period })^{-1}$.
- Symmetry: E_{8} Weyl group (order $=696729600$)
- The configuration space is the principal E_{8} Weyl alcove.
- Ground State: $\Psi_{0}=\left(\Delta_{+}^{(8)} \Delta_{-}^{(8)}\right)^{\nu} \Delta_{E_{8}}^{\nu}, \quad E_{0}=310 \beta^{2} \nu^{2}$,

$$
\Delta_{ \pm}^{(8)}=\prod_{j<i=1}^{8} \sin \frac{\beta}{2}\left(x_{i} \pm x_{j}\right), \quad \Delta_{E_{8}}=\prod_{\left\{\nu_{j}\right\}} \sin \frac{\beta}{4}\left(x_{8}+\sum_{j=1}^{7}(-1)^{\nu_{j}} x_{j}\right) .
$$

Fundamental Trigonometric Invariants (FTI)

- Assume factorization form $\Psi=\Psi_{0} \Phi$

Fundamental Trigonometric Invariants (FTI)

- Assume factorization form $\Psi=\Psi_{0} \Phi$
- Define gauge rotated Hamiltonian $h \equiv \Psi_{0}^{-1}\left(\mathcal{H}-E_{0}\right) \Psi_{0}$ (for which Φ is eigenfunction.)

Fundamental Trigonometric Invariants (FTI)

- Assume factorization form $\Psi=\Psi_{0} \Phi$
- Define gauge rotated Hamiltonian $h \equiv \Psi_{0}^{-1}\left(\mathcal{H}-E_{0}\right) \Psi_{0}$ (for which Φ is eigenfunction.)
- We want to demonstrate that Φ is a polynomial in some variables (E_{8} Jack polynomial),

Fundamental Trigonometric Invariants (FTI)

- Assume factorization form $\Psi=\Psi_{0} \Phi$
- Define gauge rotated Hamiltonian $h \equiv \Psi_{0}^{-1}\left(\mathcal{H}-E_{0}\right) \Psi_{0}$ (for which Φ is eigenfunction.)
- We want to demonstrate that Φ is a polynomial in some variables (E_{8} Jack polynomial),
- Fundamental Trigonometric (Weyl) Invariants (FTI):

$$
\tau_{a}(x)=\sum_{\omega \in \Omega_{a}} e^{i \beta(w \cdot x)}, \quad w=\sum_{i} w_{i} e_{i}, x=\sum_{i} x_{i} e_{i} \in \mathbb{R}^{8}, \quad e_{i}=\text { std basis }
$$

Ω_{a} : the orbit generated by fundamental weight $w_{a}, a=1, \ldots 8$

Fundamental Trigonometric Invariants (FTI)

- Assume factorization form $\Psi=\Psi_{0} \Phi$
- Define gauge rotated Hamiltonian $h \equiv \Psi_{0}^{-1}\left(\mathcal{H}-E_{0}\right) \Psi_{0}$ (for which Φ is eigenfunction.)
- We want to demonstrate that Φ is a polynomial in some variables (E_{8} Jack polynomial),
- Fundamental Trigonometric (Weyl) Invariants (FTI):

$$
\tau_{a}(x)=\sum_{\omega \in \Omega_{a}} e^{i \beta(w \cdot x)}, \quad w=\sum_{i} w_{i} e_{i}, x=\sum_{i} x_{i} e_{i} \in \mathbb{R}^{8}, \quad e_{i}=\text { std basis }
$$

Ω_{a} : the orbit generated by fundamental weight $w_{a}, a=1, \ldots 8$
FTI and weights w_{a} ordered by their lengths

FTI	weight vector	w_{a}^{2}	orbit size $\left\|\Omega_{a}\right\|$
τ_{1}	$w_{1}=W_{8}=e_{7}+e_{8}$	2	240
\ldots	\ldots	\ldots	\ldots
τ_{8}	$w_{8}=W_{4}=e_{3}+e_{4}+e_{5}+e_{6}+e_{7}+5 e_{8}$	30	483840

We have shown that

Olshanetsky-
Perelomov
Hamiltonians
E_{8} trig Hamiltonian FTI
$h_{E_{8}}$
First Eigenfunctions
Thanks
(i) the similarity-transformed O-P Trigonometric Hamiltonian $h_{E_{8}} \propto \Psi_{0}^{-1}\left(\mathcal{H}_{E_{8}}-E_{0}\right) \Psi_{0}$, written in terms of the τ_{a} 's is an operator in algebraic form:

$$
h_{E_{8}}(\tau)=\sum_{i, j=1}^{r} A_{i j}(\tau) \frac{\partial^{2}}{\partial \tau_{i} \partial \tau_{j}}+\sum_{i=1}^{r} B_{i}(\tau) \frac{\partial}{\partial \tau_{i}},
$$

i.e. $A_{i j}(\tau), B_{i}(\tau)$ are polynomials in τ_{a} 's, $\quad a=1 \ldots 8$

We have shown that

Olshanetsky-
Perelomov
Hamiltonians
E_{8} trig Hamiltonian FTI
$h_{E_{8}}$
First Eigenfunctions
Thanks
(i) the similarity-transformed O-P Trigonometric Hamiltonian $h_{E_{8}} \propto \Psi_{0}^{-1}\left(\mathcal{H}_{E_{8}}-E_{0}\right) \Psi_{0}$, written in terms of the τ_{a} 's is an operator in algebraic form:

$$
h_{E_{8}}(\tau)=\sum_{i, j=1}^{r} A_{i j}(\tau) \frac{\partial^{2}}{\partial \tau_{i} \partial \tau_{j}}+\sum_{i=1}^{r} B_{i}(\tau) \frac{\partial}{\partial \tau_{i}}
$$

i.e. $A_{i j}(\tau), B_{i}(\tau)$ are polynomials in $\tau_{a}{ }^{\text {'s }}, \quad a=1 \ldots 8$
(ii) the Hamiltonian $h_{E_{8}}(\tau)$ is exactly solvable:
$P_{n} \equiv\left\langle\tau_{1}^{n_{1}} \tau_{2}^{n_{2}} \cdots \tau_{8}^{n_{8}} \mid 0 \leq 2 n_{1}+2 n_{2}+3 n_{3}+3 n_{4}+4 n_{5}+4 n_{6}+5 n_{7}+6 n_{8} \leq n\right\rangle$
are invariant subspaces of $h_{E_{8}}$

$$
\left(n, n_{i} \in \mathbb{N}\right)
$$

We have shown that

Olshanetsky-
(i) the similarity-transformed O-P Trigonometric Hamiltonian $h_{E_{8}} \propto \Psi_{0}^{-1}\left(\mathcal{H}_{E_{8}}-E_{0}\right) \Psi_{0}$, written in terms of the τ_{a} 's is an operator in algebraic form:

$$
h_{E_{8}}(\tau)=\sum_{i, j=1}^{r} A_{i j}(\tau) \frac{\partial^{2}}{\partial \tau_{i} \partial \tau_{j}}+\sum_{i=1}^{r} B_{i}(\tau) \frac{\partial}{\partial \tau_{i}}
$$

i.e. $A_{i j}(\tau), B_{i}(\tau)$ are polynomials in $\tau_{a}{ }^{\prime}$'s, $\quad a=1 \ldots 8$
(ii) the Hamiltonian $h_{E_{8}}(\tau)$ is exactly solvable:
$P_{n} \equiv\left\langle\tau_{1}^{n_{1}} \tau_{2}^{n_{2}} \cdots \tau_{8}^{n_{8}} \mid 0 \leq 2 n_{1}+2 n_{2}+3 n_{3}+3 n_{4}+4 n_{5}+4 n_{6}+5 n_{7}+6 n_{8} \leq n\right\rangle$
are invariant subspaces of $h_{E_{8}}$

$$
\left(n, n_{i} \in \mathbb{N}\right)
$$

The spaces P_{n} form an infinite flag: $P_{0} \subset P_{1} \subset \ldots \subset P_{n} \subset \ldots$,
Characteristic vector: $(2,2,3,3,4,4,5,6) \quad(\neq$ rational case $)$

First Eigenfunctions

Conclusions

$$
\begin{array}{cl}
\phi_{[1,0,0,0,0,0,0,0]}=\tau_{1}+\frac{240 \nu}{29 \nu+1}, & -\epsilon=2+58 \nu, \\
\phi_{[0,1,0,0,0,0,0,0]}=\tau_{2}+\frac{126 \nu}{17 \nu+1} \tau_{1}+\frac{15120 \nu^{2}}{(17 \nu+1)(23 \nu+1)}, & -\epsilon=4+92 \nu, \\
\phi_{[0,0,1,0,0,0,0,0]}=\tau_{3}+\frac{84 \nu(74 \nu+1)}{(11 \nu+1)(14 \nu+1)} \tau_{1}+\frac{84 \nu}{11 \nu+1} \tau_{2}+\frac{6720 \nu^{2}(74 \nu+1)}{(14 \nu+1)(19 \nu+1)(11 \nu+1)}, & -\epsilon=6+114 \nu,
\end{array}
$$

Spectrum: $\quad-\epsilon_{\left\{p_{1}, \ldots, p_{8}\right\}}=(\mathbf{p}, \mathbf{p})+2(\mathbf{p}, \rho) \nu, \quad$ (R. Sasaki et al. 2000)

First Eigenfunctions

Conclusions

$$
\begin{array}{cl}
\phi_{[1,0,0,0,0,0,0,0]}=\tau_{1}+\frac{240 \nu}{29 \nu+1}, & -\epsilon=2+58 \nu, \\
\phi_{[0,1,0,0,0,0,0,0]}=\tau_{2}+\frac{126 \nu}{17 \nu+1} \tau_{1}+\frac{15120 \nu^{2}}{(17 \nu+1)(23 \nu+1)}, & -\epsilon=4+92 \nu, \\
\phi_{[0,0,1,0,0,0,0,0]}=\tau_{3}+\frac{84 \nu(74 \nu+1)}{(11 \nu+1)(14 \nu+1)} \tau_{1}+\frac{84 \nu}{11 \nu+1} \tau_{2}+\frac{6720 \nu^{2}(74 \nu+1)}{(14 \nu+1)(19 \nu+1)(11 \nu+1)}, & -\epsilon=6+114 \nu,
\end{array}
$$

Spectrum: $\quad-\epsilon_{\left\{p_{1}, \ldots, p_{8}\right\}}=(\mathbf{p}, \mathbf{p})+2(\mathbf{p}, \rho) \nu, \quad$ (R. Sasaki et al. 2000) $\mathrm{p}=\sum_{a=1}^{8} p_{a} w_{a}, \quad \rho=\sum_{a=1}^{8} w_{a} \quad$ (Weyl vector)

First Eigenfunctions

Conclusions

$$
\begin{array}{cl}
\phi_{[1,0,0,0,0,0,0,0]}=\tau_{1}+\frac{240 \nu}{29 \nu+1}, & -\epsilon=2+58 \nu, \\
\phi_{[0,1,0,0,0,0,0,0]}=\tau_{2}+\frac{126 \nu}{17 \nu+1} \tau_{1}+\frac{15120 \nu^{2}}{(17 \nu+1)(23 \nu+1)}, & -\epsilon=4+92 \nu, \\
\phi_{[0,0,1,0,0,0,0,0]}=\tau_{3}+\frac{84 \nu(74 \nu+1)}{(11 \nu+1)(14 \nu+1)} \tau_{1}+\frac{84 \nu}{11 \nu+1} \tau_{2}+\frac{6720 \nu^{2}(74 \nu+1)}{(14 \nu+1)(19 \nu+1)(11 \nu+1)}, & -\epsilon=6+114 \nu,
\end{array}
$$

Spectrum: $\quad-\epsilon_{\left\{p_{1}, \ldots, p_{8}\right\}}=(\mathbf{p}, \mathbf{p})+2(\mathbf{p}, \rho) \nu, \quad$ (R. Sasaki et al. 2000) $\mathrm{p}=\sum_{a=1}^{8} p_{a} w_{a}, \quad \rho=\sum_{a=1}^{8} w_{a} \quad$ (Weyl vector)

Conclusions

First Eigenfunctions

Conclusions

$$
\begin{array}{cl}
\phi_{[1,0,0,0,0,0,0,0]}=\tau_{1}+\frac{240 \nu}{29 \nu+1}, & -\epsilon=2+58 \nu, \\
\phi_{[0,1,0,0,0,0,0,0]}=\tau_{2}+\frac{126 \nu}{17 \nu+1} \tau_{1}+\frac{15120 \nu^{2}}{(17 \nu+1)(23 \nu+1)}, & -\epsilon=4+92 \nu, \\
\phi_{[0,0,1,0,0,0,0,0]}=\tau_{3}+\frac{84 \nu(74 \nu+1)}{(11 \nu+1)(14 \nu+1)} \tau_{1}+\frac{84 \nu}{11 \nu+1} \tau_{2}+\frac{6720 \nu^{2}(74 \nu+1)}{(14 \nu+1)(19 \nu+1)(11 \nu+1)}, & -\epsilon=6+114 \nu,
\end{array}
$$

Spectrum: $\quad-\epsilon_{\left\{p_{1}, \ldots, p_{8}\right\}}=(\mathbf{p}, \mathbf{p})+2(\mathbf{p}, \rho) \nu, \quad$ (R. Sasaki et al. 2000) $\mathrm{p}=\sum_{a=1}^{8} p_{a} w_{a}, \quad \rho=\sum_{a=1}^{8} w_{a} \quad$ (Weyl vector)

Conclusions

- The use of FTI enabled us to find an algebraic form of the Hamiltonian associated to E_{8}, which did not seem feasible at all, in the past

Conclusions

$$
\begin{gathered}
\phi_{[1,0,0,0,0,0,0,0]}=\tau_{1}+\frac{240 \nu}{29 \nu+1}, \\
\phi_{[0,1,0,0,0,0,0,0]}=\tau_{2}+\frac{126 \nu}{17 \nu+1} \tau_{1}+\frac{15120 \nu^{2}}{(17 \nu+1)(23 \nu+1)}, \\
\phi_{[0,0,1,0,0,0,0,0]}=\tau_{3}+\frac{84 \nu(74 \nu+1)}{(11 \nu+1)(14 \nu+1)} \tau_{1}+\frac{84 \nu}{11 \nu+1} \tau_{2}+\frac{6720 \nu^{2}(74 \nu+1)}{(14 \nu+1)(19 \nu+1)(11 \nu+1)}, \quad-\epsilon=6+92 \nu,
\end{gathered}
$$

Spectrum: $-\epsilon_{\left\{p_{1}, \ldots, p_{8}\right\}}=(\mathbf{p}, \mathbf{p})+2(\mathbf{p}, \rho) \nu, \quad$ (R. Sasaki et al. 2000) $\mathrm{p}=\sum_{a=1}^{8} p_{a} w_{a}, \quad \rho=\sum_{a=1}^{8} w_{a} \quad$ (Weyl vector)

Conclusions

- The use of FTI enabled us to find an algebraic form of the Hamiltonian associated to E_{8}, which did not seem feasible at all, in the past
- The Olshanetsky-Perelomov Hamiltonian, in FTI algebraic form, preserves an infinite flag of polynomial spaces, with a characteristic vector $\vec{\alpha}=(2,2,3,3,4,4,5,6)$, i.e it is exactly solvable (block diagonal form).

Conclusions

$$
\begin{gathered}
\phi_{[1,0,0,0,0,0,0,0]}=\tau_{1}+\frac{240 \nu}{29 \nu+1}, \\
\phi_{[0,1,0,0,0,0,0,0]}=\tau_{2}+\frac{126 \nu}{17 \nu+1} \tau_{1}+\frac{15120 \nu^{2}}{(17 \nu+1)(23 \nu+1)}, \\
\phi_{[0,0,1,0,0,0,0,0]}=\tau_{3}+\frac{84 \nu(74 \nu+1)}{(11 \nu+1)(14 \nu+1)} \tau_{1}+\frac{84 \nu}{11 \nu+1} \tau_{2}+\frac{6720 \nu^{2}(74 \nu+1)}{(14 \nu+1)(19 \nu+1)(11 \nu+1)}, \quad-\epsilon=6+92 \nu,
\end{gathered}
$$

Spectrum: $-\epsilon_{\left\{p_{1}, \ldots, p_{8}\right\}}=(\mathbf{p}, \mathbf{p})+2(\mathbf{p}, \rho) \nu, \quad$ (R. Sasaki et al. 2000) $\mathrm{p}=\sum_{a=1}^{8} p_{a} w_{a}, \quad \rho=\sum_{a=1}^{8} w_{a} \quad$ (Weyl vector)

Conclusions

- The use of FTI enabled us to find an algebraic form of the Hamiltonian associated to E_{8}, which did not seem feasible at all, in the past
- The Olshanetsky-Perelomov Hamiltonian, in FTI algebraic form, preserves an infinite flag of polynomial spaces, with a characteristic vector $\vec{\alpha}=(2,2,3,3,4,4,5,6)$, i.e it is exactly solvable (block diagonal form).

First Eigenfunctions Thanks

Thank you

Happy Birthday to Francesco Calogero!

[^0]: *Collaboration with A. Turbiner, M. García (ICN-UNAM) and K.G. Boreskov (ITEP) JC López Vieyra (ICN-UNAM)

 Solvability of the E_{8} trigonometric system

