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80’s: Discovery of a remarkable family of quantum
Hamiltonians associated to the root systems of the classical
(An (Calogero-Sutherland) , Bn, Cn, Dn) and exceptional
(G2, F4, E6,7,8) Lie algebras, and non-crystalographic
(H3,4, I2(k)) root systems

They have the property of complete integrability and exact
solvability

So far, any quantum O-P Hamiltonian, written in certain
variables, has the form of a second order differential operator
with polynomial coefficients (algebraic form)
The goal is to check it for E8-trigonometric model

The eigenfunctions of the (algebraic) Hamiltonian are always
polynomials
The eigenvalue is a second-degree polynomial in the quantum

numbers
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Assume factorization form Ψ = Ψ0 Φ

Define gauge rotated Hamiltonian h ≡ Ψ−1
0 (H − E0)Ψ0

(for which Φ is eigenfunction.)

We want to demonstrate that Φ is a polynomial in some variables
(E8 Jack polynomial),

Fundamental Trigonometric (Weyl) Invariants (FTI):

τa(x) =
∑

ω∈Ωa

eiβ(w·x) , w=
P

i wiei ,x=
P

i xiei∈R
8, ei=std basis

Ωa: the orbit generated by fundamental weight wa , a=1,...8

FTI and weights wa ordered by their lengths

FTI weight vector w2
a orbit size |Ωa|

τ1 w1 = W8 = e7 + e8 2 240
. . . . . . . . . . . .

τ8 w8 = W4 = e3 + e4 + e5 + e6 + e7 + 5e8 30 483840
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JC López Vieyra (ICN-UNAM) Solvability of the E8 trigonometric system 5 / 7

(i) the similarity-transformed O-P Trigonometric Hamiltonian
hE8 ∝ Ψ−1

0 (HE8 − E0)Ψ0 , written in terms of the τa’s is an
operator in algebraic form:

hE8(τ) =

r
∑

i,j=1

Aij(τ)
∂2

∂τi∂τj

+

r
∑

i=1

Bi(τ)
∂

∂τi

,

i.e. Aij(τ), Bi(τ) are polynomials in τa’s , a=1...8

(ii) the Hamiltonian hE8(τ) is exactly solvable:

Pn ≡ 〈τn1
1 τn2

2 · · · τn8
8 |0 ≤ 2n1+2n2+3n3+3n4+4n5+4n6+5n7+6n8 ≤ n〉

are invariant subspaces of hE8 (n, ni ∈ N)



We have shown that

Olshanetsky-
Perelomov
Hamiltonians

E8 trig Hamiltonian

FTI

hE8

First Eigenfunctions

Thanks

JC López Vieyra (ICN-UNAM) Solvability of the E8 trigonometric system 5 / 7

(i) the similarity-transformed O-P Trigonometric Hamiltonian
hE8 ∝ Ψ−1

0 (HE8 − E0)Ψ0 , written in terms of the τa’s is an
operator in algebraic form:

hE8(τ) =

r
∑

i,j=1

Aij(τ)
∂2

∂τi∂τj

+

r
∑

i=1

Bi(τ)
∂

∂τi

,
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(ii) the Hamiltonian hE8(τ) is exactly solvable:

Pn ≡ 〈τn1
1 τn2

2 · · · τn8
8 |0 ≤ 2n1+2n2+3n3+3n4+4n5+4n6+5n7+6n8 ≤ n〉

are invariant subspaces of hE8 (n, ni ∈ N)

The spaces Pn form an infinite flag: P0 ⊂ P1 ⊂ . . . ⊂ Pn ⊂ . . . ,

Characteristic vector: (2, 2, 3, 3, 4, 4, 5, 6) ( 6= rational case)
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φ[1,0,0,0,0,0,0,0] = τ1 + 240ν
29 ν+1

, −ǫ = 2 + 58 ν ,

φ[0,1,0,0,0,0,0,0] = τ2 + 126ν
17 ν+1

τ1 + 15120ν2

(17 ν+1)(23 ν+1)
, −ǫ = 4 + 92 ν ,

φ[0,0,1,0,0,0,0,0] = τ3 +
84ν (74 ν+1)

(11 ν+1)(14 ν+1)
τ1 + 84ν

11 ν+1
τ2 +

6720ν2(74 ν+1)
(14 ν+1)(19 ν+1)(11 ν+1)

, −ǫ = 6 + 114 ν ,

Spectrum: −ǫ{p1,...,p8} = (p,p) + 2(p, ρ)ν , (R. Sasaki et al. 2000)
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Thank you

Happy Birthday to Francesco Calogero!
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