Two bodies gravitational system with variable mass and damping-anti damping effect due to star wind

Gustavo López Velázquez
Ma. Esmeralda Juárez
Departamento de Física, CUCEI
Universidad de Guadalajara
Cuernavaca, November, 2010

OUTLINE

Comets as an example of variable mass system.
Two body problem and damping-anti damping model.
One degree of freedom equation of motion.
Radial constant of motion, Lagrangian, and Hamiltonian.
Model for variable mass.
Spiral behavior of the comet and period of motion of motion.
Conclusion.

Components Of Comets

Halley Comet

Equation of Motion

$$
\begin{aligned}
& \frac{d}{d t}\left(m_{1} \frac{\vec{d} r_{1}}{d t}\right)=-\frac{G m_{1} m_{2}}{\mid \vec{r}_{1}-\bar{r}_{2} \mathrm{P}}\left(\overrightarrow{r_{1}}-\vec{r}_{2}\right) \\
& \text { Meshcherski-Gylden (1900) problem } \\
& \text { L.M. Berkovich, Celestial Mech. } 24 \text { (1981) } 407 \\
& \text { A.A. Bekov, Astr. Zh. } 66 \text { (1989) } 135 \\
& \text { C Prieto J.A.Docobo, Ast. Ast. } 318 \text { (1997) } 657 \\
& \frac{d}{d t}\left(m_{2} \frac{d \vec{r}_{2}}{d t}\right)=-\frac{G m_{1} m_{2}}{\left|\vec{r}_{2}-\vec{r}_{1}\right|^{3}}\left(\vec{r}_{2}-\vec{r}_{1}\right)-\frac{\gamma}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}\left(\frac{d\left|\vec{r}_{1}-\vec{r}_{2}\right|}{d t}\right)^{2}\left(\overrightarrow{r_{1}}-\vec{r}_{2}\right)
\end{aligned}
$$

c.m. coordinate system does not help
$\overrightarrow{r_{2}}=\vec{r}=(r \sin \theta \cos \varphi, r \sin \theta \sin \varphi, r \cos \theta)$
$m_{2}\left(r-r \hat{\theta}^{2}-r \dot{\varphi} \sin ^{2} \theta\right)=-\frac{G m_{1} m_{2}}{r^{2}}-m_{2} r-r^{2}$
$m_{2}(2 \dot{r} \dot{\theta}+r \dot{\theta}+r \dot{\rho} \sin \theta \cos \theta)=-\dot{m}_{2} r \dot{\theta}$
$m_{2}(2 r \dot{\varphi} \sin \theta+r \ddot{\rho} \sin \theta+2 r \dot{\varphi} \dot{\theta} \cos \theta)=-m_{2} r \dot{\varphi} \sin \theta \quad \dot{\varphi}=0$
$\left.m_{2}(\gamma-r \dot{\theta})=-\frac{G m_{1} m_{2}}{r^{2}}-m_{2} r-\gamma\right\rangle^{2}$
$m_{2}(2 \dot{r} \dot{\theta}+r \dot{\theta})+m_{2} r \dot{\theta}=0$.

$$
\lambda_{i}=m_{2} r^{2} \theta
$$

$$
C(r, v)=m_{i}^{2} e^{2,2(a)} v^{2}+\int d r\left(\frac{2 G m_{1}}{r^{2}}-\frac{2 l_{2}^{2}}{m_{i}^{2} r^{3}}\right) m_{i}^{2} e^{2 p r r} \quad \quad \text { (characteristic curve) }
$$

$$
\Delta(\gamma)=\int \frac{\overrightarrow{a r}}{m_{2}(\gamma)}
$$

$$
\text { By choosing G as: } \quad G_{ \pm}(C)=\frac{C^{ \pm}}{2 m_{20}^{ \pm}}
$$

$$
\begin{aligned}
& \dot{r}=-\frac{G m_{1}}{r^{2}}-\frac{m_{2}}{m_{2}} \dot{r}-\frac{\gamma_{2}}{m_{2}} \dot{r}^{2}+\frac{l_{\dot{2}}^{2}}{m_{2}^{2} r^{3}} \\
& \left.m_{2}=m_{2} \sigma r\right) \quad m_{2}=m_{2} \dot{r} \quad m^{\prime}=\frac{d m}{d r} \\
& \dot{r}=-\frac{G m_{1}}{r^{2}}-\frac{m_{2}^{\prime}+\gamma_{2}^{2}}{m_{2}}+\frac{l_{\dot{2}}^{2}}{m_{2}^{2} r^{3}} \longrightarrow\left\{\begin{array}{l}
r=v \\
v=-\frac{G m_{1}}{r^{2}}-\frac{m_{2}^{\prime}+\gamma_{2}}{m_{2}} v^{2}+\frac{l_{\dot{2}}^{2}}{m_{2}^{2} r^{3}}
\end{array}\right. \\
& v \frac{\partial K}{\partial r}+\left[-\frac{G m_{1}}{r^{2}}-\frac{m_{i}^{1}+\gamma}{m_{a}} v^{2}+\frac{l_{i}^{2}}{m_{i}^{2} r^{3}}\right] \frac{\partial K}{\partial v}=0 \quad K(r, v)=G(C(x, v))
\end{aligned}
$$

$K^{ \pm}(r, v)=\frac{\left(m_{a}^{ \pm}(r)\right)^{2} v^{2}}{2 m_{\ddot{u}}^{ \pm}} e^{i \neq r^{\prime}[r \mid}+V_{\pi m}^{ \pm}(r)$

It has an minimum at $r^{*}\left(\frac{d^{2} V_{\pi i}^{\mathrm{t}}}{d r^{2}}\right)_{r-r^{-}}>0$
$r^{*}\left(m_{2}\left(l^{*}\right)\right)^{2}=\frac{l_{e}^{2}}{G m_{1}}$
$L^{ \pm}=v^{2} \int \frac{K^{ \pm}(r, v) d v}{v^{2}}$
$p^{ \pm}=\frac{\partial L^{ \pm}}{\partial \nu}$

$H^{ \pm}=\frac{m_{\Delta}^{ \pm} p^{2}}{2\left(m_{a}^{ \pm}(\eta)\right)^{2}} e^{\left.-i \neq \mu^{\prime} r^{\prime}\right)}+V_{\pi}^{ \pm}(r)$

$$
V_{\pi i l}(r)=-\frac{G m_{1} m_{20}}{r}+\frac{l_{0}^{2}}{2 m_{\mathrm{e} 0} r^{2}}
$$

G.Darboux, (1986)
E.T. Whittaker, (1917)
J.Douglas, Amer. Math. Soc.,50 (1941) 71.
J.A. Kobussen, Acta Phys Austriaca, 51, (1979) 293.
C. Leubner, Physica A, 86 (1981) 2.
G.López, Ann. Phys. 251 (1996) 383.
G. López, Int. J. Theo. Phys. (2008)
$p=\frac{\left(m_{2}^{ \pm}(r)\right)^{2} e^{i \hbar^{\prime}\left(\sigma^{\prime}\right)}}{m_{\mathrm{u}}^{ \pm}} v$

$$
\begin{aligned}
& \text { Mass lost model } m_{i}^{ \pm}(r)= \begin{cases}m_{i}^{-}\left(r_{0}\right)\left(1-e^{-\phi r}\right) \ldots \ldots \ldots \ldots . .(+) y<0 & \alpha=\alpha(\delta n) \\
m_{i}^{+}\left(r_{p}\right)-b\left(1-e^{-\phi\left(-r_{r}\right.}\right) \ldots .(-\mu>0 & b=b(\delta n)\end{cases} \\
& \Lambda^{+}(\theta)=\frac{1}{o n_{\mathrm{a}}} \ln \left(e^{\alpha+}-1\right) \quad \Lambda^{-}(\eta)=\frac{-1}{\alpha\left(b-m_{p}\right)}\left[\alpha r+\ln \left(m_{p}-b\left(1-e^{-\Delta \psi-r,}\right)\right)\right] \\
& V_{r i l}^{+}(r)=\left[-\frac{G m_{1} m_{a}}{r}+\frac{l_{e}^{2}}{2 m_{a} r^{2}}\right] e^{i+r^{\prime}\left(k_{a}\right.}+W_{1}(\gamma, \alpha, r)
\end{aligned}
$$

$m_{s} \times 1.9991 \times 10^{i 4} \mathrm{~K} \quad m_{r} \approx 2.3 \times 10^{14} K \quad r_{p} \approx 0.6 a u \quad r_{\mathrm{a}} \approx 35 a u \quad l_{p} \approx 10.83 \times 10^{20} \mathrm{Kg} \mathrm{m}^{2} / s$ $a u=149597870.7 \mathrm{~km}$

period:

$$
\begin{aligned}
& T=T_{1 r}^{-}+T_{1-}^{+}
\end{aligned}
$$

Conclusions:

Taking the reference system in the body of fixed mass, the two 3-D gravitational bodies problem is reduced a 1-D equation. Then, a constant of motion, a Lagrangian and a Hamiltonian are obtained for the radial part of the motion.

A model for the mass variation is given, and the resulting trajectories in the (r, v) space (constant of motion) are different from those in the (r,p) space (Hamiltonian).

Orbits of the comet are not close neither ellipticals but spiral out as the mass of the comet lost. The period of the comet increases with the comet mass lost.

Damping-anti damping force makes the comet to move away even more from the star, increasing the aphelion, perihelion distances and the period of the comet.

