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An invertible transformation 
and some of its applications  

Francesco Calogero 
Dipartimento di Fisica, Università di Roma "La Sapienza" 
Istituto Nazionale di Fisica Nucleare, Sezione di Roma 

 

Abstract 
    An explicitly invertible transformation is reported, and several of its 
applications. This transformation is elementary and therefore all the results 
obtained via it might be considered trivial; yet the findings described in this 
report are generally far from appearing trivial until the way they are obtained is 
revealed. Various contexts can be considered: algebraic and Diophantine 
equations, nonlinear Sturm-Liouville problems, dynamical systems (with 
continuous and with discrete time), nonlinear partial differential equations, 
analytical geometry, functional equations, etc. etc.  While this transformation, in 
one or another context, is certainly known to many, it does not seem to be as 
universally known as it deserves to be, for instance it is not routinely taught in 
basic University courses (to the best of our knowledge). Some generalizations of 
this transformation are also reported. 
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    All these results have been obtained in collaboration with Mario Bruschi, 
François Leyvraz and Matteo Sommacal . 

They are reported in the following 2 papers: 
    M. Bruschi, F. Calogero, F. Leyvraz and M. Sommacal, "An invertible 
transformation and some of its applications", J. Nonlinear Math. Phys. (in press); 
"Generalization of an invertible transformation and examples of its applications" 
(in preparation). 
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The explicitly invertible transformation   
 

    It consists of a change of variables, involving 2 arbitrary functions ( ) ( ),, 21 wFwF  
from 2 quantities ,, 21 uu  to 2 quantities 21,xx  and viceversa. It reads as follows: 
 

( ) ( ) ( )( )
( ) ( )( ) ( ).,

,,

1222122112111

2112212222111

xFxuxFxFxuFxu

uFuFuxFuxuFux

−=−−=−=
++=+=+=

  

 

 The most remarkable aspect of this transformation is its explicitly invertible 
character: note that both the direct respectively the inverse changes of variables 
involve only (albeit also in a nested manner) the 2 arbitrary functions ( ) ( )wFwF 21 , , 
and not their inverses. This in particular entails that, if the 2 functions ( ) ( )wFwF 21 ,  
are one-valued (as we hereafter assume), both the direct and inverse changes 
of variables are one-valued; if the 2 functions ( ) ( )wFwF 21 ,  are entire, this property 
is inherited by both the direct and inverse changes of variables; if the 2 functions 

( ) ( )wFwF 21 ,  are polynomials (of arbitrary degree), both the expressions of 21,xx in 
terms of  ,, 21 uu  and the expressions of  ,, 21 uu in terms of  21,xx , are as well 
polynomial. 
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Remark: the above  transformation can be obtained as a composition of two 
triangular “seed” transformations: 

( )
( ),,

,,

122211

222111

yFyxyx

uyuFuy

+==
=+=

 
clearly entailing 

( )
( ) ( )( ).

,

211221222
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uFuFuxFux

uFux

++=+=
+=

 

 

It can be moreover easily checked that this is an area-preserving 
transformation: 
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Example: for instance for 

( ) ( ) ,, 2
22

2
11 wcwFwcwF ==

 

the direct and inverse transformations read as follows:  
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Generalizations 
 

A multinested approach: 2 variables, 
more than 2 arbitrary functions 

 

3 arbitrary functions 
 

( ) ( )( )( )
( )( );

,
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++=
++++=

 

 

( ) ( )( )( )
( )( ).
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, 
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4 arbitrary functions 
 

 

( ) ( )( )( )
( )( )

( )( ) ( )( )( ),
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( )( ) ( )( )
( )( )( )
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N arbitrary functions 
 Can be written recursively, as extrapolation of those written above. 



F. Calogero, An invertible transformation and some of its applications, page 8 / 56 

More variables 
A direct approach 

 N=3: 

( ) ( ) ( );,,,,, 213333122232111 xxFuxuxFuxuuFux +=+=+=
 

( ) ( ) ( ).,,,,, 321113122221333 uuFxuuxFxuxxFxu −=−=−=
 

 

N=4:  

 

( ) ( )
( ) ( );,,,,,

,,,,,,

321444421333

431222432111

xxxFuxuxxFux

uuxFuxuuuFux

+=+=
+=+=

 

  

 

( ) ( )
( ) ( ).,,,,,

,,,,,,

432111431222

421333321444

uuuFxuuuxFxu

uxxFxuxxxFxu

−=−=
−=−=

 

And the formulas for arbitrary N are then obvious. 
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Matrices 
    This generalization to more variables (say, to 2N  variables) is quite 
straightforward, amounting to a systematic replacement of scalars with N×N 
matrices. Of course while doing so appropriate account must be taken of the 
noncommutativity of matrices. 
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A more general generalization 
(reported here for simplicity for only 2 variables)  

 

To arrive at our “more general” generalization we take as point of departure two 
assumedly known invertible transformations, which we write in operatorial form 
as follows: 

,...2,1,, 1 =⋅=⋅= − nzTyyTz nn  
 
And let us assume that the direct and inverse versions of each of these 
transformations depend on an arbitrary number of parameters nkf , which 
themselves may be functions of another variable u: 
 

( ) ( )., ufffTT nknknknn ≡≡  
 

    For instance a simple example of invertible transformation ("Möbius"), from y 
to z and viceversa, reads as follows: 
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( ) ( )
( ) ( )

( ) ( )
( ) ( ) ,,
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where the 4 a priori arbitrary functions ( )ufnk  are only restricted by the condition 
that the combination ( ) ( ) ( ) ( ) ( )ufufufufuD 3241 −=  not vanish identically. 
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    Let us now consider the transformation---from 2 quantities 21,uu  to 2 
quantities 21, xx  ---reading as follows: 
 

( )( )
( )( ) ( )( )( )( ) ,
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212112221222

12111

uuufTfTuxfTx

uufTx

kkk

k
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which---under the above assumptions---can clearly be explicitly inverted, to read 
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    Note that both the direct transformation and the inverse transformation involve 
the functions ( )ufnk  but not their inverses. 



F. Calogero, An invertible transformation and some of its applications, page 13 / 56 

    For instance if the 2 transformations nT  are both of Möbius type, then the 
direct transformation reads 
 

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ,,

1241232
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2
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2122111
1 xfxfu

xfxfu
x
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x

+
+=
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+=

 
 

and the inverse transformation reads 
 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( ) .,
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−
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Note that these explicit transformations involve 8 a priori arbitrary functions 
( )wfnk . 
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   Remark: above we assumed the functions ( )wfnk  to depend on a single 
argument, and the generalized transformation to relate 2 quantities 21,uu  to 2 
quantities 21, xx  and viceversa. The extension of this treatment to explicitly 

invertible transformations from N quantities nu  to N quantities  nx , and 
viceversa, with N>2, is rather obvious; they will involve functions of N-1 
arguments.  
 

Remark: the various generalizations described above can of course be 
combined. 
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Applications: some 
representative examples 

 

    Algebraic and Diophantine equations 
 
        Assume that the 2 quantities 21 , uu are the solutions of the following 2 quite 
trivial algebraic equations: 

,0, 212121 =+++= γβα uuuuuu
 

obviously implying 

( ) .4
2
1 2

21 




 −+±−−=== ± γβαβαuuu
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 Then, by using the simplest of our invertible transformations, we conclude 
that the following system of 2 equations in the 2 unknowns 21, xx , 

( )( ) ( ),12212211 xFxxFxFx −=−−  
 

 

( )( )[ ] ( )[ ]
( )( )[ ] ( )[ ] ,012212211

12212211

=+−+−−+
−−−

γβα xFxxFxFx

xFxxFxFx

 

where ( ) ( )wFwF 21 ,  are 2 arbitrary functions, has the two solutions 

( ) ( )( )., 12211 ±±±±± ++=+= uFuFuxuFux  

Remark: if j=+ βα , ( ) 22 4 k=−+ γβα  with j, k two arbitrary integers, and the 
2 functions ( ) ( )wFwF 21 ,  are  two arbitrary polynomials with integer coefficients, the  
above system of 2 equations in the 2 unknowns 21, xx  is Diophantine ! 
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Nonlinear Sturm-Liouville problems 
 

    An example of highly nonlinear Sturm-Liouville problem reads as follows: 
 

( )[ ] ( )
[ ( ) ( )

( ) ] ,46

32344

2444'
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1
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1
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2
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3
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2

3
2

2
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3
121121

xxxxzxx

xxzxxxxxzxxx

zxxxzxzxxxxx

λαβλαβαλββ
αλββλβαλββλα

ααλβααβαλ

+−++

++−+++

++−+−+=

 

 

( ) .'222' 11
4

1
2

2
2

1
2

2
2

1212 xxxxxxzxzxxx βλαβαβλαλβλ +−+−−+=  
 

Here and below z  is the (independent) variable, ( ) ( )zxxzxx 2211 , ≡≡  are two 
functions of this variable, appended primes indicate differentiation with respect 
to this variable, βα ,  are two arbitrary constants and λ  is the eigenvalue of the 
nonlinear Sturm-Liouville problem characterized by this system of two first-order 
nonlinear ODEs and the requirement that the eigenfunctions ( ) ( )zxzx 21 ,  be 
polynomials in the variable z . The solution of this problem is that the 
eigenvalues λ  are the nonnegative integers, ,...,2,1,0, == ℓℓλ  and the 
corresponding eigenfunctions are 
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( ) ( ) ( )[ ] ,4 2
11 zHzHzx −+=
ℓℓ

ℓα
 

( ) ( ) ( ) ( )[ ]{ }.42 2
112 zHzHzHzx −− ++=
ℓℓℓ

ℓℓ αβ
 

Here and below ( )zH
ℓ  is the Hermite polynomial of degree ℓ  in the variable z . 

    These findings are obtained from the standard linear Sturm-Liouville problem 
characterizing Hermite polynomials, reading 
 

( ),,02'2'' zuuuzuu ≡=−− λ
 

  
And---via the requirement that ( )zu   be a polynomial in  z  entailing 

( ) ( )zHzu
ℓ

ℓℓ === ,...;2,1,0,λ ---by setting ( ) ( ) ( ) ( )zuzuzuzu 21 ', ==  and by then 
relating  ( ) ( )zuzu 21 ,  to ( ) ( )zxzx 21 ,  via our standard invertible transformation. 
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Dynamical systems 
 
    Let us recall that a dynamical system consists of a finite but otherwise a priori 
arbitrary number N of (first-order) Ordinary Differential Equations (ODEs), say 
 

( ) ( ) ,;,...,2,1, xfxNnxfx nn === ɺɺ
 

where the N (real) "dependent variables" ( )txx nn ≡  are functions of the (real) 
"independent variable" t  ("time"), superimposed dots indicate time-

differentiations, x  is the N-vector of components  ( ) ,,...,, 1 Nn xxxx ≡  and the N 
functions ( )xfn  are (a priori arbitrarily) assigned. 
    Here for simplicity we restrict attention to systems with N=2. 
    Consider the following elementary dynamical system characterizing the 
evolution of the 2 variables ( ) ( ),, 2211 tuutuu ≡≡ depending on the independent 
variable t  ("time"): 

., 1221 uuuu −== ɺɺ
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The general solution of this trivial system of 2 ODEs is 
 

( ) ( )
( ) ( ).cos

,sin

2

1

θ
θ

+=
+=
tAtu

tAtu

 

 
 Let us now apply our standard invertible transformation relating 

( ) ( )tuutuu 2211 , ≡≡  to  ( ) ( )txxtxx 2211 , ≡≡  and viceversa. One thereby easily gets the 
following new dynamical system: 
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( )
( )( ) ( )( )[ ] ,' 122111221

1221

xFxFxxFxF

xFxx

−−−−
−=ɺ

 

 

( )( )
( ){ ( ) ( )( )

( )( )[ ] }.

''

12211

122112212

122112

xFxFx

xFxFxFxxF

xFxFxx

−−⋅
⋅−−−+

−+−=ɺ
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And the general solution of this dynamical system reads as follows:  
 

( ) ( ) ( )( ) ,tcosA sin 11 θθ +++= FtAtx  
 

( ) ( )
( ) ( )( )( ) .tcosA sin

cos

12

2

θθ
θ

++++
+=

FtAF

tAtx

 

 
Note that this implies that the dynamical system written above (with arbitrary 

( ) ( )wFwF 21 , ) is isochronous: all its solutions are periodic with period π2=T . 
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    Another simple and instructive case is that obtained, in an analogous manner, 
from the elementary dynamical system 
 

( ) ,,, 32
2

1
2

33221 uuuuuuuu ρωωρ ++−=== ɺɺɺ
 

the general solution of which reads 
 

( ) ( ) ( ) ,expsin1 tBtAtu ρθω −++=
( ) ( ) ( ) ,expcos2 tBtAtu ρρθωω −−+=

( ) ( ) ( ) .expsin 22
3 tBtAtu ρρθωω −++−=  

 
Here ω  and  ρ  are two arbitrary constants, and if they are both real and  ρ   is 
positive, 0>ρ , then this general solution ---where θ,,BA  are 3 arbitrary 
constants---is asymptotically isochronous, namely it becomes periodic in the 
remote future with the fixed period ωπ /2=T  , up to corrections vanishing 
exponentially, of order ( )tρ−exp  . 



F. Calogero, An invertible transformation and some of its applications, page 24 / 56 

    The corresponding system obtained via the simple invertible transformation 
( ) ( ) ( )
( ) ( ) ( ) ,,,,,,

,,,,,,

321113122221333

213333122232111

uuFxuuxFxuxxFxu

xxFuxuxFuxuuFux

−=−=−=
+=+=+=

 

reads as follows: 

( ) ( )( ),,, 32
2

1
2

322,1321,121 uuuuuFuuFux ρωωρ ++−+=ɺ
 

( ) ( )( ),,, 32
2

1
2

311,21311,232 uuuuxFxuxFux ρωωρ ++−+= ɺɺ
 

 

( ) ( ) ( ) ,,, 2212,31211,332
2

1
2

3 xxxFxxxFuuux ɺɺɺ −+++−= ρωωρ
with 

( ) ( )
,2,1,3,2,1,

,
, 21

21, ==
∂

∂≡ kn
w

wwF
wwF

k

n
kn

 

and 321 ,, uuu  given in terms of 321 ,, xxx  by the corresponding inverse 
transformation, see above. 
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And it is clear that the general solution of this system is asymptotically 
isochronous, indeed its explicit expression reads as follows: 
 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ),,

,,

,,

21333

31222

32111

txtxFtutx

tutxFtutx

tutuFtutx

+=
+=
+=

  

with 
 

( ) ( ) ( ) ,expsin1 tBtAtu ρθω −++=
( ) ( ) ( ) ,expcos2 tBtAtu ρρθωω −−+=

( ) ( ) ( ) .expsin 22
3 tBtAtu ρρθωω −++−=
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Hamiltonian systems 
    The class of Hamiltonian dynamical systems is characterized by the system of 
2 ODEs 

( ) ( )
,

,
,

,
q

qph
p

p

qph
q

∂
∂−=

∂
∂= ɺɺ

 

where the Hamiltonian function ( )qph ,  is a priori arbitrary. Note that we are 
restricting here, for simplicity, attention to the case of a single canonical 
coordinate q  and correspondingly a single canonical momentum. The fact to be 
highlighted is that, in this context, the standard invertible transformation---say, 
from 1uq ≡  and  2up ≡  to new canonical variables  1xQ ≡  and  2xP ≡ , hence 
reading 

( ) ( ) ( )( )
( ) ( )( ) ( ).,

,,

2211

1221

QFPpQFPFQpFQq

pFqFpQFpPpFqQ

−=−−=−=
++=+=+=

 

---is canonical, namely it leads to new equations of motion which retain the 
Hamiltonian form, 
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( ) ( )
,

,
,

,
Q

QPH
P

P

QPH
Q

∂
∂−=

∂
∂= ɺɺ

 

with 

( ) ( ) ( )( ) ,,,,,, QPqQPphQPH =  
 

where the functions ( ) ( )QPqQPp ,,,  are of course provided by the standard 
transformation formulas indicated above, with the identification 1uq ≡ , 2up ≡   and 

1xQ ≡ , 2xP ≡  (or 2xQ ≡ , 1xP ≡ ). 
     

One can thereby manufacture, for instance, a multitude of isochronous 
Hamiltonian systems, such as 
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( ) { ( )
[ ( )

( ) ] } ,

2

1
,

222
2102

2
21010

22
210

QQP

QQPQ

QQPQPH

βββα

βββαα

βββ

−−−−

−−−−−+

−−−=

 

which clearly obtains from the harmonic oscillator Hamiltonian 
( ) ( ) 2/, 22 qpqph +=  via the canonical transformation written above, and 

moreover with the assignments 

( ) ( ) ., 2
2102

2
2101 wwwFwwwF βββααα ++=++=  

Hence it features solutions which are all periodic with period  π2  (and which can 
be easily written quite explicitly).     

Remark. An interesting related issue is whether these Hamiltonians, after 
quantization, feature an equispaced spectrum. This may well depend on the 
specific prescription employed to make the transition from the classical to the 
quantal Hamiltonian. And to what extent are the corresponding stationary 
Schroedinger equations explicitly solvable? 
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Discrete-time dynamical systems 
(in particular, isochronous and asymptotically isochronous 

examples) 
 
Let us recall that a discrete-time dynamical system---or, equivalently, a 

multidimensional map---is characterized by a set of N "dependent variables" nx , 

which are functions of a "discrete-time" independent variable ℓ  taking (here and 

hereafter) nonnegative integer values, ( ) ,...2,1,0, =≡ ℓℓnn xx , and which 
evolve in discrete time as follows: 

( ) ( ).~;,...,1,~ xfxNnxfx nn ===
 

The notation here is analogous to that used above for standard (i. e., 
continuous-time) dynamical systems, except that now (and hereafter) 
superimposed tildes indicate that the independent variable has been advanced 
by one unit, 

( ) ( ) .,...,1,1~~ Nnxxx nnn =+≡≡ ℓℓ
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     A discrete-time dynamical system is called isochronous if there exists an 

open, fully-dimensional set of initial data ( )0nx  yielding solutions which are 
completely periodic with a fixed period L , 

( ) ( )
( ) ( ),

;,...,1,

ℓℓ

ℓℓ

xLx

NnxLx nn

=+
==+

 

where  L  is of course now a fixed positive integer (independent of the initial 
data). The isochronous discrete-time dynamical systems that we consider below 
are such that this relation holds for arbitrary initial data. 
    Several techniques to manufacture isochronous continuous-time dynamical 
systems are available, in addition to that described above, based on our 
invertible transformation. Hence a plethora of such isochronous models is 
known. But no analogous techniques are---to the best of my knowledge---
available to manufacture discrete-time isochronous dynamical systems (see, 
however, my very recent paper entitled “The discrete-time goldfish”, submitted to 
J. Math. Phys. on September 18, 2010). The invertible transformations 
described above allow us to manufacture such systems by taking as starting 
point a trivial discrete-time isochronous system, in analogy to the procedure 
applied above in the context of continuous-time dynamical systems. 
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Again, in order to illustrate this approach in the simplest context, below we 
mainly restrict consideration to two-dimensional systems, which moreover allow 
neat graphical representations of their evolution, taking place in a plane. But we 
also discuss below---in analogy to what we did in the preceding section---a 
tridimensional example, displaying the possibility to manufacture solvable 
discrete-time systems that are asymptotically isochronous. 
    So, to begin with let us start from the following quite simple discrete-time 2-
dimensional dynamical system: 

.~,~
212211 ucusuusucu +=−=  

Here and throughout the discussion of discrete-time systems we use the short-
hand notation 

,
2

sin,
2

cos 






≡






≡
λ
π

λ
π

sc
 

so that, at every time step, the two-vector ( )ℓu  of which the 2 dependent 
variables ( )ℓ1u  and ( )ℓ2u  are the 2 components makes a counterclockwise 
rotation, by the angle λπ /2 , in the 21 uu  Cartesian plane. 
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This evolution is obviously solvable, since clearly the two-vector ( )ℓu  obtains 
from the two-vector ( )0u  by performing a counterclockwise rotation, in the 21 uu  
Cartesian plane, by the angle λπ /2 ℓ : hence the corresponding formulas 
expressing ( )ℓ1u  and ( )ℓ2u in terms of the initial data ( )01u  and ( )02u  are simply 

( ) ( ) ( )

( ) ( ) ( ) .0
2

cos0
2

sin

,0
2

sin0
2

cos

212

211

u
L

u
L

u

u
L

u
L

u








+






=








−






=

ℓℓ
ℓ

ℓℓ
ℓ

ππ

ππ

 

Clearly this evolution is isochronous with period L if L=λ  with L a positive 
integer. More generally, this evolution is as well isochronous with period L if λ   is 
rational, ML /=λ  with L and M coprime integers (and, say, L positive).  
    Let us now perform our standard change of dependent variables, from the 2 
variables ( )ℓ1u  and ( )ℓ2u  to the 2 variables ( )ℓ1x  and ( )ℓ2x . Then the discrete-
time dynamical system characterizing the evolution of the 2 new dependent 
variables ( )ℓ1x  and ( )ℓ2x  reads as follows: 
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( ) ( )( )
( ) ( )( )( ),

~

122112211

122112211

xFxFsxFcxcxsF

xFxFcxFsxsxcx

−−−++
−−+−=

 

 

 ( ) ( )( ) ( ) .~~
12122112212 xFxFxFsxFcxcxsx +−−−+=  

 
    These 2 "equations of motion", constitute the new discrete-time dynamical 
system. This more complicated system is, via the invertible transformation, just 
as solvable as the original, trivial system, and obviously as well isochronous with 
period L, if ML /=λ  with L a positive integer and M a coprime integer. Clearly the 
freedom to choose arbitrarily the 2 functions ( )wF1  and ( )wF2  entails that this class 
of discrete dynamical systems is quite vast. But the multiple convolution of these 
functions that occurs in these equations of motion entails that these equations 
are generally not very simple. 



F. Calogero, An invertible transformation and some of its applications, page 34 / 56 

    Clearly the quantity 
2

2
2

1 uuK +=  
is a "constant of motion" for  the evolution of the original system for the variables 

( )ℓ1u  and ( )ℓ2u . Likewise the image of this constant under the transformation 
from the 2 variables ( )ℓ1u  and ( )ℓ2u  to the 2 variables ( )ℓ1x  and ( )ℓ2x  is a 
constant of motion for the new evolution of the 2 variables ( )ℓ1x  and ( )ℓ2x , 
reading 
 

( )( )[ ] ( )[ ] .2
122

2
12211 xFxxFxFxK −+−−=  
 

Note that it depends on the assignment of the 2 functions ( )wF1  and ( )wF2 , but not 
on the number λ  which also characterizes the discrete-time dynamical system 
evolution. 
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The specific value of this constant K depends of course on the initial data 
( )01x  and ( )02x . Plotting in the 21 xx  Cartesian plane for various values of K the 

curves defined by the formula written above---which might be quite complicated, 
but cannot feature any crossing---yields a qualitative assessment of the behavior 
of the dynamical system under consideration, each (discrete) trajectory of which 
is of course confined to lie on the curve characterized by the value of K 
determined by the initial data. Indeed, if  λ  is a large number, the fact that the 
discrete trajectory shall lie on the curve with the relevant value of K---as 
determined by the initial data---entails that the discrete evolution shall closely 
mimic a continuous evolution along that curve: of course the evolution of the 
discrete-time dynamical system shall be periodic if  λ  is rational and nonperiodic 
if λ  is irrational, and in the latter case it will eventually seem to completely cover 
the relevant constant-K curve, although of course it shall, after a finite time ℓ , 
only cover ℓ  different points on that curve. For small values of λ   the discrete 
character of the evolution may instead have a more dramatic connotation, with 
the moving point characterized by the Cartesian coordinates ( )ℓ1x  and ( )ℓ2x  
jumping sequentially from one point of the constant-K curve to another point on 
that curve possibly quite far from the previous one. Of course this 
phenomenology shall be particularly striking in the case of a rational value of 

ML /=λ  with L a small positive integer (and M a coprime integer). 
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Example. Let us make the simple assignments  

( ) ( ) ,, 2
2

2
1 wwFwwF βα ==  

where α  and  β  are 2 a priori arbitrary numbers. Then the new discrete-time 
dynamical system reads as follows: 

( )[ ] ( )
( )[ ] ( ){ } ,

~

2
2

12

22
121

2
12

22
1211

xxcxxxs

xxsxxxcx

ββαα

ββα

−+−−+

−−−−=

 

 

( )[ ] ( ) .~~ 2
1

2
12

22
1212 xxxcxxxsx βββα +−+−−=  

 
    This discrete-time dynamical system is fairly complicated: indeed the right-
hand side of the first equation features a term with the dependent variable 1x  
raised to the 8-th power, and the right-hand side of the second equation features 
a term with the dependent variable 1x  raised to the 16-th power. In this case the 
constant of motion K  reads 
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( )[ ] ( ) .
22

12

222
121 xxxxxK ββα −+−−=  
 

The dynamical evolution entailed by this model is fairly rich, while being 
solvable, and of course isochronous whenever  is an integer (or a rational 
number). See the Figure for a display of the trajectory in the 21 xx  Cartesian 
plane of this system (with ( ) ( ) 8.00,8.00,6,1 21 −===== xxλβα  implying 
K=3.69566.  

     
  
  
     Let us also mention that, if the initial values 
assigned are somewhat larger than those of the 
trajectory reported in this Figure, the 
corresponding trajectory can reach quite large 
values before returning to the initial values: for 
instance the initial values ( ) ( ) 30,30 21 == xx  yield 

( ) ( ) 47673,693 21 == xx , with K=1125. 
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    Let us also report a discrete-time dynamical system involving 3 dependent 
variables and displaying the asymptotically isochronous phenomenology (see 
the somewhat analogous continuous-time dynamical system discussed above). 
    An asymptotically isochronous discrete-time system involving 3 dependent 
variables. Let 

( ) ( ) ,221~,~,~
32133221 ucucuuuuuu +++−=== ααα

where α  and λ  are two (a priori arbitrary) real numbers. 
    It is easily seen that the general solution of this discrete-time model reads as 
follows: 

( )

( ) ( ) ( ) ( ) ( ) ,21,1

,
2

sin
2

cos

12312

1

+=+=+=








+






+=

ℓℓℓℓℓ

ℓℓ
ℓ

ℓ

uuuuu

L
C

L
BAu

ππα

 

 
with CBA ,,  three arbitrary constants (of course easily expressible in terms of the 
initial data).  
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Hence the solution is, for arbitrary initial data, isochronous with period L (i. 
e., ( ) ( )ℓℓ nn uLu =+ ) if λ   is rational, ML /=λ  with L and M coprime integers (and, 
say, L positive) and moreover 1=α  (if  1−=α , it is as well isochronous, with 
period L if L is even and 2L if L is odd), and it is asymptotically isochronous (i. e., 

( ) ( ) ( )ℓℓℓ αOuLu nn =−+   as ∞→ℓ ) if ML /=λ  and 1<α . 
    A class of apparently quite less trivial discrete-time dynamical systems is then 
obtained via the standard invertible change of variables, from 321 ,, uuu  to 321 ,, xxx  
and viceversa:  
 

( ) ( ) ( );,,,,, 213333122232111 xxFuxuxFuxuuFux +=+=+=
 

( ) ( ) ( ).,,,,, 321113122221333 uuFxuuxFxuxxFxu −=−=−=
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It involves the 3 arbitrary functions ( ) 3,2,1,, 21 =nwwFn , and it reads: 

( ) ( )
( ) ( )

( ) ( ),~,~,,~
,,,,,~
,,,,,~

2133213

3215321132

3214321221

xxFxxxJx

xxxGxxxGxx

xxxGxxxGxx

+=
+−=
+−=

 

where the 5 functions mG  are recursively given, one in terms of the other, as 
follows:   

( ) ( )
( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( ) ( )( ),,,,,,,,,,

,,,,,,,,

,,,,,,,,

,,,,,,

,,,,

32132143212223215

3213211313214

321133212213213

32113123212

2133211

xxxJxxxGxxxGxFxxxG

xxxJxxxGxFxxxG

xxxGxxxxGxFxxxG

xxxGxxFxxxG

xxFxxxG

+−=
−=

−−=
−=

=

 

and the function J depends on 321 ,, GGG  as follows: 

( ) ( )[ ]
( ) ( )[ ]
( ) ( )[ ] .,,2

,,21

,,,,

32113

32122

32131321

xxxGxc

xxxGxc

xxxGxxxxJ

−++
−++

−=

α
α

α

 



F. Calogero, An invertible transformation and some of its applications, page 41 / 56 

The general solution of this discrete-time model reads as follows: 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ),,2

,2,1

,2,1

21313

11212

11111

ℓℓℓℓ

ℓℓℓℓ

ℓℓℓℓ

xxFux

uxFux

uuFux

++=
+++=
+++=

 

With 

( ) .
2

sin
2

cos1 






+






+=
L

C
L

BAu
ℓℓ

ℓ
ℓ ππα

 

And clearly this system inherits the same phenomenology---concerning 
isochrony and asymptotic isochrony---of the simple linear model to which it is 
related via the invertible transformation, as described above. 
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The Figure displays the orbit and limit trajectory in the 321 uuu  Cartesian space 
for the original system and the corresponding orbit and limit trajectory in the  

321 xxx  Cartesian space for the system obtained via the transformation reported 
above with 

( ) ( ) ( ) .,,,,
2

, 22
321 qpqpFqpqpF

qp
qpqpF −=−=−+=
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Solvable systems of autonomous 
nonlinear PDEs 

Here we start again from a trivially solvable model, and via an invertible 
transformation we obtain a new model, also solvable, which looks much less 
trivial. For simplicity the treatment is restricted to a system of 2 first-order PDEs 
featuring 2 dependent and 2 independent variables. 

We take as point of departure the following trivial system of 2 linear PDEs, 

,, ,1,2,2,1 xtxt ϕϕϕϕ ==
 

where the 2 functions ( )txnn ,ϕϕ ≡  depend on the 2 independent variables x  and 
t . Here and below subscripted variables indicate partial differentiation with 
respect to them. Clearly this system of 2 linear PDEs has the following general 
solution: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ),,

,,

212

211

txtxtxtx

txtxtxtx

−Φ−+Φ≡+Φ=
−Φ++Φ≡+Φ=

−

+

ϕ
ϕ

 

where ( )znΦ  are 2 arbitrary functions of the single variable z . 
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We now apply the following invertible transformation: 

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ,,

1241232

1221212
2

2142131

2122111
1 ψψϕ

ψψϕψ
ϕϕϕ
ϕϕϕψ

ff

ff

ff

ff

+
+=

+
+=

 

 
( ) ( )
( ) ( )

( ) ( )
( ) ( ) .,

1211232

1221242
2

2112131

2122141
1 ψψψ

ψψψϕ
ϕϕψ
ϕϕψϕ

ff

ff

ff

ff

−
−−=

−
−−=

 
 

These explicit transformations involve 8 a priori arbitrary functions ( )wfnk . 
However we now restrict attention to a very specific example (due to Matteo 
Sommacal), corresponding to the following assignment: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) .,

,

,

4232232421

2
4

2
3

432
1312

2
4

2
3

413314
1411

wcwfwfwcwfwf

cc

cwcc
wfwf

cc

cccwccc
wfwf

====
−
+−==

−
+++==
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Then the two functions ( )txnn ,ψψ ≡   satisfy the following system of two 
coupled nonlinear PDEs: 

( )[ ]
( ) ,/

,/

,2,1,2

,2
22

,1,1

βψαψψ
βψαβψαψ

xxt

xxt

−=
−+=

 

where 

( ) ( )
( )( )

( ) ( )( )
( )( )( ) .,

,
1

,

2
243221221

2121
2

4
2

3
21

221221

2
12

21

ψψψ
ψψψψββ

ψψ
ψψψαα

cccccc

cccc

cccc

c

−+−++
++−=≡

+−++
−=≡

 



F. Calogero, An invertible transformation and some of its applications, page 46 / 56 

 The general solution ( ) ( )txtx ,,, 2211 ψψψψ == of this system of two PDEs then 
reads as follows: 
 

( ) ( )
( )

,

,

43

34
2

423413131

3414243132
1

−

−

−+−+

−+−+

Φ+
Φ+=

ΦΦ+Φ+−Φ+−−
ΦΦ+−Φ+Φ+−=

cc

cc

cccccccccc

cccccccccc

ψ

ψ

 

where ( )tx,±± Φ=Φ  are of course defined as above,  

( ) ( ) ( )
( ) ( ) ( ),

,

21

21

txtxtx

txtxtx

−Φ−+Φ≡+Φ
−Φ++Φ≡+Φ

−

+

 

in terms of the 2 arbitrary functions  ( )znΦ  of the single variable z . 
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A solvable nonautonomous PDE 
Here we show---as a representative example---how to manufacture a 

solvable nonautonomous PDE starting from the trivial (linear) autonomous first-
order PDE 

( ) ( ) ,,, wuwu wu ϕϕ =  
the general solution of which reads of course 

( ) ( )wuFwu +=,ϕ  
where ( )zF  is an arbitrary function of the single variable z . We set 

( ) ( )yxwu ,, ψϕ =  
with 

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ,,

2423

2221

1413

1211

xfxfw

xfxfw
y

wfwfu

wfwfu
x

+
+=

+
+=

 
 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( ) .,

2123

2224

1113

1214

xfxfy

xfxfy
w

wfwfx

wfwfx
u

−
−−=

−
−−=
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It is then a matter of trivial if tedious algebra to ascertain that ( )yx,ψ  satisfies 
the following (linear) nonautonomous PDE: 

( ) ( ) ( ) ( )yxyxhyxyxg yx ,,,, ψψ =  
with ( )yxg ,  and  ( )yxh ,  expressed explicitly (by rather complicated formulas not 
reported here) in terms of the 8 arbitrary functions ( ) .4,3,2,1,2,1, == knzfnk  
We limit our presentation to exhibit here one specific example (due to François 
Leyvraz), corresponding to the assignments 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) .sin,cos

,1,0,

22132421

14131211

zzfzfzzfzf

zfzfzfzzf

=−===
====

 

Then the linear nonautonomous PDE satisfied by ( )yx,ψ   reads as follows: 
 

( ) ( )
( ) ( ) ( ) ( )[ ] ( )

( ) ( )

( )( ) ( )[ ] ( ) .,1sincos1

sinsincos
sincos

sincos
cossincos2

,2sin22cos113

sincossincos

22

2

22

2

yxyxxxyx

xxxy
xyx

xxy
xyx

yxxyxyy

xyxxxy

y

x

ψ

ψ

+−++⋅

⋅







++









−
+−=

−−++⋅
⋅−+
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And its general solution reads as follows:  
 

( ) ,
sincos
sincos

sincos
sincos

, 








−
++

+
−=

xyx

xxy

xxy

xyxxx
Fyxψ

 
 

with ( )zF  an arbitrary function. 
On the face of it, the fact that the PDE written above is explicitly solvable 

should appear quite nontrivial to anybody who does not know how this finding 
has been arrived at; although verifying it is a relatively trivial task. 
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Functional equations 
Here we report an, apparently nontrivial, functional equation involving 2 

functions, as an example of the kind of findings obtainable via this approach. It 
reads as follows: 

 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )[ ] ( )( ) ( )( )
( ) ( )[ ] ( )( ) ( )( ) ,

,

21124211232212

21122211122212
212

2111142111132111

2111112111112111
211

zzxfzzxfzuzu

zzxfzzxfzuzu
zzx

zuzufzuzufzuzu

zuzufzuzufzuzu
zzx

++++
++++=+

+++
+++=+
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where, in the 2 preceding formulas, firstly ( )zu1  should be replaced by the 

following expression in terms of  ( )zx1  and ( )zu2 , 

( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) ,

2112131

2122141
1 zufzufzx

zufzufzx
zu

−
−−=

 

and subsequently ( )zu2  should be replaced by the following expression in terms 
of ( )zx1  and ( )zx2 , 

( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) ,

1211232

1221242
2 zxfzxfzx

zxfzxfzx
zu

−
−−=

 

so that the resulting formulas relate (explicitly, if in a convoluted manner) the 
values that the two functions ( )zx1  and ( )zx2  take at the value 21 zzz +=  of 
their argument, to the values they take at 1z  and at 2z  (where 1z  and 2z  are of 
course independent variables taking arbitrary values). 
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The (explicit !) solution of this functional equation reads as follows: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ,

exp
exp

1413

1211
1 zafzafzb

zafzafzb
zx

+
+=

 

( ) [ ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ]

[ ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ] ,

exp
exp

exp
exp

exp
exp

exp
exp

1

1413

1211
24

1413

1211
23

1413

1211
22

1413

1211
212

−









+
++










+
+

⋅








+
++










+
+=

zafzafzb

zafzafzb
f

zafzafzb

zafzafzb
fza

zafzafzb

zafzafzb
f

zafzafzb

zafzafzb
fzazx

 

where ba,  are two arbitrary parameters. And note that the 8 functions 
( ) 4,3,2,1,2,1, == knwfnk  appearing in the above functional equation and in its 

solution are arbitrary. 
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This finding clearly obtains, via the transformations 
 

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ,,

1241232

1221212
2

2142131

2122111
1 xfxfu

xfxfu
x

ufufu

ufufu
x

+
+=

+
+=

 
 

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ,,

1211232

1221242
2

2112131

2122141
1 xfxfx

xfxfx
u

ufufx

ufufx
u

−
−−=

−
−−=

 

 
from the two trivial functional equations 
 

( ) ( ) ( ) ( ) ( ) ( ) ,, 22122122111211 zuzuzzuzuzuzzu +=+=+  
 
whose solutions of course read 
 

( ) ( ) ( ) .,exp 21 zazuzbzu ==  
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Analytical geometry 
    The standard invertible transformation 
 

( ) ( ) ( )( )
( ) ( )( ) ( )1222122112111

2112212222111

,

,,

xFxuxFxFxuFxu

uFuFuxFuxuFux

−=−−=−=
++=+=+=

 

 

is an area preserving reparametrization of the Cartesian plane: indeed we 
already mentioned that---as it is indeed easy to verify---it entails that the 
Jacobian determinant of this change of variables---from 21,uu  to 21, xx  and 
viceversa---is unity, for any arbitrary assignment of the 2 functions ( ) ( )wFwF 21 ,  
(this property corresponds---in the Hamiltonian context, see Section 4.3.1---to 
the canonical character of the corresponding change of variables). 
    A representative example of the findings that easily flow from this property is 
provided by the following Proposition. 
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    Proposition: Let 21,cc  be 2 arbitrary (real) numbers, and draw, in the 21 xx   
Cartesian plane, the following 4 curves: the curve A  going from the point )0,0(=a  
to the point ),1( 2cb =  and characterized by the equation (a piece of a parabola) 

;: 2
122 xcxA =  

the curve B  going from the point ),1( 2cb =  to the point )1,( 2
2

11 cccc +=   and 
characterized by the (quartic) equation 

;021: 4
1

2
212

2
121

2
21

2
1221 =+−++−− xccxxccxcxcxxB  

the curve C  going from the point )1,( 2
2

11 cccc +=  to the point )0,0(=a  and 
characterized by the (quartic) equation 

;02: 4
1

2
212

2
121

2
211 =−+− xccxxccxcxC  

and the curve D  going from the point )0,0(=a  to the point 



















 +++=
2

1
2

1

42

1

2

1
,

42

1 c
c

c
c  

(lying on the curve B ) and characterized by the (quartic) equation 

.02: 4
1

2
212

2
121

2
21

2
1221 =−+−+− xccxxccxcxcxxD  

Then the region enclosed by the 3 curves CBA ,,  has area 1/2, and the curve D  
divides this region in two parts of equal area (see Figure).  
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    The proof of this Proposition is an immediate consequence of the fact that, via 
the above transformation with ( ) 2wcwF nn =  the region enclosed by the 3 curves  

CBA ,, corresponds, in the 21 xx  Cartesian plane, to the triangle of vertices 
( ) ( ) ( )1,0,0,1,0,0  in the 21 uu  Cartesian plane, and likewise the curve D   corresponds 
to the segment starting from the vertex  )0,0(=a  and bisecting that triangle (see 
Figure).  
     
  
  


