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Abstract

An explicitly invertible transformation is reported, and several of its
applications. This transformation is elementary and therefore all the results
obtained via it might be considered trivial; yet the findings described in this
report are generally far from appearing trivial until the way they are obtained is
revealed. Various contexts can be considered: algebraic and Diophantine
equations, nonlinear Sturm-Liouville problems, dynamical systems (with
continuous and with discrete time), nonlinear partial differential equations,
analytical geometry, functional equations, etc. etc. While this transformation, in
one or another context, is certainly known to many, it does not seem to be as
universally known as it deserves to be, for instance it is not routinely taught in
basic University courses (to the best of our knowledge). Some generalizations of
this transformation are also reported.
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All these results have been obtained in collaboration with Mario Bruschi,

Francois Leyvraz and Matteo Sommacal .
They are reported in the following 2 papers:

M. Bruschi, F. Calogero, F. Leyvraz and M. Sommacal, "An invertible
transformation and some of its applications”, J. Nonlinear Math. Phys. (in press);
"Generalization of an invertible transformation and examples of its applications"
(in preparation).



F. Calogero, An invertible transformation and some of its applications, page 3 / 56

The explicitly invertible transformation

It consists of a change of variables, involving 2 arbitrary functions F(w),F,(w)
from 2 quantities u,u,, to 2 quantities x.x, and viceversa. It reads as follows:

X =U+ F1(u2)’ X =U, + FZ(Xl) =u, + Fz(ul + Fl(uz))’
ulle_Fl(uz)le_Fl( Xz_Fz(Xl))’ U, =X2—|:2(X1).

The most remarkable aspect of this transformation is its explicitly invertible
character: note that both the direct respectively the inverse changes of variables
involve only (albeit also in a nested manner) the 2 arbitrary functions F,(w),F,(w),
and not their inverses. This in particular entails that, if the 2 functions F,(w),F,(w)
are one-valued (as we hereafter assume), both the direct and inverse changes
of variables are one-valued; if the 2 functions F.(w),F,(w) are entire, this property
IS inherited by both the direct and inverse changes of variables; if the 2 functions
F.(w),F,(w) are polynomials (of arbitrary degree), both the expressions of X,%in

terms of U, U,, and the expressions of U, U,,in terms of Xx,X;, are as well
polynomial.
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Remark: the above transformation can be obtained as a composition of two
triangular “seed” transformations:

Yi=U T Fl(u2)’ Y, =U,,
X = Yi, % =Y, +F(v),

clearly entailing
X =u + Fl(UZ)’
X, =U, + FZ(Xl) =Uu, ¥ FZ(ul + Fl(UZ))'

It can be moreover easily checked that this is an area-preserving
transformation:

0% 0%
du, O0u, _q
0X, O0X%y|
ou, O0u,
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Example: for instance for

F(w)=cw, Fy(w)=c,w,

the direct and inverse transformations read as follows:
_ 2 _ 212
Xl_u1+Clu2 ] XZ_U2+C2(U1+C1UZ) J

u1:X1_C1(X2_ 2)(12)2’ U, = X, — 2X12-
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Generallzatlons

A multinested approach: 2 variables,
more than 2 arbitrary functions

3 arbitrary functions

% =U + Fy(u;)+ Fy(u, + F(u, + F(U,))),
X2:u2+|:( (Uz))
ul:X1_F3(X2)_F1(X2_Fz(xl_Fs(Xz)))’
U, =X, = FZ(Xl - F3(X2)).



4arb’itrary functions
X =u Fl(u2)+ Fs(uz + F2(u1 + Fl(UZ)))’
X, =U, + FZ(ul + Fl(UZ))
+Fy(uy + F(ug))+ Fo(u, + F(u + F(u,))).

U =%~ F3(X2 - F4(X1))_ Fl(XZ - F4(X1))
B Fz(xz B F3(X2 B F4(X1)))’
U, =X, ~ F4(X1)_ FZ(Xl - F3(X2 - F4(X1)))-’

N arbitrary functions
Can be written recursively, as extrapolation of those written above.
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More variables
A direct approach

Ta:ul R, Us), % =u, +Fy(x,U5), % =uy+Fy(X, %,);
Us =% = R4, %), W, =% = Fy(%, W), u =% ~F(u,,u;).

X=U T Fl(UZ,LIg,U4), X =U, T Fz(qu31u4)1
X = U + Fy (%, %, U,), %, = U, +F (%, %, %)

U, =% = F, (%, %, %), Uy =% = Fy(X, %,,U,),
U, =%, = F(%, U, Uy ), U =x —F(u,,u,u,).

And the formulas for arbitrary N are then obvious.
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Matrices

This generalization to more variables (say, to N? variables) is quite
straightforward, amounting to a systematic replacement of scalars with NxN
matrices. Of course while doing so appropriate account must be taken of the
noncommutativity of matrices.
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A more general generalization

(reported here for simplicity for only 2 variables)

To arrive at our “more general” generalization we take as point of departure two
assumedly known invertible transformations, which we write in operatorial form
as follows:

z=T Iy, y=T, ', n=12,...

And let us assume that the direct and inverse versions of each of these

transformations depend on an arbitrary number of parameters f., which
themselves may be functions of another variable u:

Tn ETn(fnk)’ 1:nk = 1:nk(u)'

For instance a simple example of invertible transformation ("Mobius"), fromy
to z and viceversa, reads as follows:
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S =Y f1(u)+ fz(u) _ £ f4(u)_ fz(u)
y fs(u) + f4(u)’ z fs(u) - fl(u) |

where the 4 a priori arbltrary functions fnk(U are only restricted by the condition
that the combination D(u) = f,(u) f,(u)- f,(u) f5(u) not vanish identically.
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Let us now consider the transformation---from 2 quantities U;,uU, to 2
guantities X, X, ---reading as follows:

X =T( f(w))u,
% =T{ (%)) 0, =T( £ (T fu(u,)) D)),

which---under the above assumptions---can clearly be explicitly inverted, to read

0, =T, (%)) .
0 =T ()3 =T £ 4 £0)) 36 .

Note that both the direct transformation and the inverse transformation involve
the functions f«(U) but not their inverses.
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For instance if the 2 transformations T, are both of MdObius type, then the
direct transformation reads

 fa(Up) + fio(Up) Uy f(%)+ ()

X = Ko = ’
U Fialup) + falu,)” %, () + Fa0(x)
and the inverse transformation reads
U = — X f14(u2)_ f12(u2) U. = — X5 f24(X1)_ f22(X1)
1 1 P2

X f13(u2)_ fll(UZ) X2 f23(xl)_ 1:21()(1).

Note that these explicit transformations involve 8 a priori arbitrary functions
fnk (W)
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Remark: above we assumed the functions fnk(W) to depend on a single
argument, and the generalized transformation to relate 2 quantities U;,U, to 2
guantities X, X, and viceversa. The extension of this treatment to explicitly
invertible transformations from N quantities Un to N quantities X, , and

viceversa, with N>2, is rather obvious; they will involve functions of N-1
arguments.

Remark: the various generalizations described above can of course be
combined.
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Applications: some
representative examples

Algebraic and Diophantine equations

Assume that the 2 quantities u,,u, are the solutions of the following 2 quite
trivial algebraic equations:

U =U,, wu,+au +p5u,+y=0,

obviously implying

U, =UuU, =U, = ;( a—ﬁi\/(a+,8)2—4y).
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Then, by using the simplest of our invertible transformations, we conclude
that the following system of 2 equations in the 2 unknowns X, X,

X~ Fl( X~ FZ(XI)) =X~ FZ(XI)’

% = F(%, = F,00) ], = Fo(x)]
T a[xl - Fl(XZ - Fz()(l))]+:3[xz - FZ(Xl)] Ty= 0,

where F,(w),F,(w) are 2 arbitrary functions, has the two solutions
X =u, +F(u,), % =u, +F,(u, +F(u,)).

Remark: if @ +8 =], (a+B)f -4y=K* with j, k two arbitrary integers, and the
2 functions F,(w),F,(w) are two arbitrary polynomials with integer coefficients, the
above system of 2 equations in the 2 unknowns X, X, is Diophantine !
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Nonlinear Sturm-Liouville problems

An example of highly nonlinear Sturm-Liouville problem reads as follows:

%"=, +x,[(400 - ) + daz,| - 4a|x’ + 200 % + a2,
+40?] x, (4,8/]x13 +362¢°X, +a/1x23)—,55<12 (2,3/1>ﬁg +362¢°%, +0’sz3)
+,82X14(,8ZX12 +60’AX22)—40’,83/]X16X2 +0’,84/]X18 ] ,

X,'= 2(/\)(1 + 2X, — B2X,° = AAX,” + 20 BAX°X, — a',BZA><14)+ 2% %,

Here and below z is the (independent) variable, x =x(2),x, = x,(z) are two
functions of this variable, appended primes indicate differentiation with respect
to this variable, a,8 are two arbitrary constants and 4 is the eigenvalue of the
nonlinear Sturm-Liouville problem characterized by this system of two first-order
nonlinear ODEs and the requirement that the eigenfunctions x,(z).x,(z) be
polynomials in the variable z. The solution of this problem is that the
eigenvalues 4 are the nonnegative integers, A=/, £=012,..., and the
corresponding eigenfunctions are
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x(z)=H,(2)+4altH, (2],
o(2)=20H,,(2)+ A{H (2)+ 4ol B (2],

Here and below H, (Z) is the Hermite polynomial of degree ¢ in the variable z.

These findings are obtained from the standard linear Sturm-Liouville problem
characterizing Hermite polynomials, reading

u"-2z2u'-2Au =0, u=u(z),

And---via the requirement that U(Z) be a polynomial in 2 entailing
A=/¢, /=012,...; u(z): Hg(z)---by setting u(z) = ul(z), u'(z) = uz(z) and by then
relating Ul(Z), UZ(Z) to X1(2) XZ(Z) via our standard invertible transformation.



F. Calogero, An invertible transformation and some of its applications, page 19 / 56

Dynamical systems

Let us recall that a dynamical system consists of a finite but otherwise a priori
arbitrary number N of (first-order) Ordinary Differential Equations (ODES), say

%, = f.(x), n=12,..,N; x=f(x),

where the N (real) "dependent variables" x, = x,(t) are functions of the (real)
"independent variable" t ("time"), superimposed dots indicate time-

differentiations, X is the N-vector of components X,, X=(%,...Xy ), and the N

functions f,(x) are (a priori arbitrarily) assigned.
Here for simplicity we restrict attention to systems with N=2.
Consider the following elementary dynamical system characterizing the

evolution of the 2 variables U, = u,(t), u, =u,(t), depending on the independent
variable t ("time"):

u=u,,u,=-U,.
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The general solution of this trivial system of 2 ODEs is
u,(t) = Asin(t +9),
u,(t) = Acodt +6).

Let us now apply our standard invertible transformation relating
u =u(t)u, =u,(t) to x =x(t)x, =x(t) and viceversa. One thereby easily gets the
following new dynamical system:



% +F (%, ~F,(x))

)'(2:

(% ~Fy(x))

Y

+F,' (X} % —Fy(x

3

]

X —F(%—Fy(x))
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And the general solution of this dynamical system reads as follows:
x,(t)= Asin(t + 8)+ F,( Acodt +6)),
x,(t)= Acodt + 8)
+F,( Asin(t+68)+F,(Acodt+86))).

Note that this implies that the dynamical system written above (with arbitrary
F.(w),F,(w)) is isochronous: all its solutions are periodic with period T =27.
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Another simple and instructive case is that obtained, in an analogous mannetr,
from the elementary dynamical system

(=0, U, =, B =0 U +au, +ou)
u,(t) = Asin(at + 8) + Bexp(- pt),
u,(t) = Accodat +6)- B pexd- pt),
u,(t) =—Adt sirlat +6)+ B exd- pt).

Here & and £ are two arbitrary constants, and if they are both real and £ is

positive, 2 >0, then this general solution ---where A B,8 are 3 arbitrary
constants---is asymptotically isochronous, namely it becomes periodic in the
remote future with the fixed period T =27/« , up to corrections vanishing

exponentially, of order exp- pt) .
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The corresponding system obtained via the simple invertible transformation
Xl = ul T Fl(u2’u3)’ X2 = u2 T FZ(Xl’US)’ X3 = u3 T FB(Xl’ X2) !
U =X~ FS(Xl’ Xz)’ U, =%~ Fz(xl’us)’ U =X - Fl(UZ’US) ,
reads as follows:

X =U, + F1,1(u2’u3)_ Fl,z(umus)(pwz U + @’ u, + ,0U3),
X, =Ug + Fz,l(xl’us)xl B F2,1(X1’u3)(10a)2 U+ U, + ,0U3),

X3 = _(/05‘)2 u, + o U, +/0u3)+ F3,1(X1’X2)X1 - F3,2(X1’X2)X2 )
with

Fn,k(Wliwz) = 0 Fna(vv\\li’WZ), n=123 k=12,
k

and U,U,,U; given in terms of X.,X,%; by the corresponding inverse
transformation, see above.
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with

indeed its pIt Xpre n reads as follows:

xl(t) (t) F(uy(t). us(t) ).
%(t)= U, (t)+ F,(x,(t) us(t) ).
%(t) = us(t) + F3( x,(t) %, (t) ),

u,(t)= Asin(et + 8) + Bexp(— pt),
u,(t) = Accodat +68) - B pexd- pt),
u,(t) = —Act sirlat +6) + B o® exi— ot) .
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Hamiltonian systems

The class of Hamiltonian dynamical systems is characterized by the system of

2 ODEs
_on(p.a) ._ an(p,
o= épm,p:_ (p.a)
p 0

where the Hamiltonian function h(p,Q) is a priori arbitrary. Note that we are
restricting here, for simplicity, attention to the case of a single canonical
coordinate 4 and correspondingly a single canonical momentum. The fact to be
highlighted is that, in this context, the standard invertible transformation---say,
from g=uy and p=u, to new canonical variables Q=x and P=Xx,, hence
reading

Q=q+F(p), P=p+F,(Q)=p+F,(a+F(p))
d=Q-F(p)=Q-F(P-F,(Q)), p=P-F,(Q).

---Is canonical, namely it leads to new equations of motion which retain the
Hamiltonian form,
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Q:aH(P,Q), p:_aH(P,Q)
0P 00

H(P.Q)=h( p(P..Q).a(P.Q)).

where the functions p(P,Q),a(P,Q) are of course provided by the standard
transformation formulas indicated above, with the identificationg=u,, p=u, and
QEXli PEXZ (Or QEX21 PEXl)-

with

One can thereby manufacture, for instance, a multitude of isochronous
Hamiltonian systems, such as
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H(P.Q)= A (P-4-5Q-£Q)
+[ Q_ao_al(P_ﬁo_ﬁlQ_ﬁzQz)
_az(P_/Bo_/B1Q_/82Q2)2 ]2 }’

which clearly obtains from the harmonic oscillator Hamiltonian

h(p, CI) = (pz + CIZ)/Z via the canonical transformation written above, and
moreover with the assignments

Fl(W):aO +0’1W+0’2W2, Fz(W):/Bo +/81W+/82W2

Hence it features solutions which are all periodic with period 271 (and which can
be easily written quite explicitly).

Remark. An interesting related issue is whether these Hamiltonians, after
guantization, feature an equispaced spectrum. This may well depend on the
specific prescription employed to make the transition from the classical to the
guantal Hamiltonian. And to what extent are the corresponding stationary
Schroedinger equations explicitly solvable?
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Discrete-time dynamical systems

(in particular, isochronous and asymptotically isochronous
examples)

Let us recall that a discrete-time dynamical system---or, equivalently, a
multidimensional map---is characterized by a set of N "dependent variables" %,

which are functions of a "discrete-time" independent variable 14 taking (here and

hereafter) nonnegative integer values, *n = %; ((),g = 012,... and which
evolve in discrete time as follows:

x =f(x), n=1...,N; X:i(>_<).

The notation here is analogous to that used above for standard (i. e.,
continuous-time) dynamical systems, except that now (and hereafter)
superimposed tildes indicate that the independent variable has been advanced
by one unit,

X = )'Zn(é)s xn(€ +1), n=1...,N.
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A discrete-time dynamical system is called isochronous if there exists an

open, fully-dimensional set of initial data Xn(O) yielding solutions which are
completely periodic with a fixed period L,

x (£+L)=x(¢), n=1,....N ;
x(¢+L)=x(1),

where L is of course now a fixed positive integer (independent of the initial
data). The isochronous discrete-time dynamical systems that we consider below
are such that this relation holds for arbitrary initial data.

Several techniques to manufacture isochronous continuous-time dynamical
systems are available, in addition to that described above, based on our
invertible transformation. Hence a plethora of such isochronous models is
known. But no analogous techniques are---to the best of my knowledge---
available to manufacture discrete-time isochronous dynamical systems (see,
however, my very recent paper entitled “The discrete-time goldfish”, submitted to
J. Math. Phys. on September 18, 2010). The invertible transformations
described above allow us to manufacture such systems by taking as starting
point a trivial discrete-time isochronous system, in analogy to the procedure
applied above in the context of continuous-time dynamical systems.
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Again, in order to illustrate this approach in the simplest context, below we
mainly restrict consideration to two-dimensional systems, which moreover allow
neat graphical representations of their evolution, taking place in a plane. But we
also discuss below---in analogy to what we did in the preceding section---a
tridimensional example, displaying the possibility to manufacture solvable
discrete-time systems that are asymptotically isochronous.

So, to begin with let us start from the following quite simple discrete-time 2-
dimensional dynamical system:

U, =Ccu,—Su,, U, =su, +cu, .

Here and throughout the discussion of discrete-time systems we use the short-
hand notation

_ 27T (2T
C=C0S— |, S=sIin — |,
A A

so that, at every time step, the two-vector u(?) of which the 2 dependent
variables Ul(f) and Uz(ﬁ) are the 2 components makes a counterclockwise
rotation, by the angle 27/1 | in the U U, Cartesian plane.
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This evolution is obviously solvable, since clearly the two-vector u(¢) obtains

from the two-vector u(0) by performing a counterclockwise rotation, in the W U,
Cartesian plane, by the angle 27//A: hence the corresponding formulas

expressing u,(¢) and U,(#)in terms of the initial data W(0) and u,(0) are simply

ul(z):CO{Z_’L”jul(o)-sm(%juz(o),

L

u,(¢)=si n(z—il_wj u,(0)+ cos{z—:_wj u,(0).

Clearly this evolution is isochronous with period L if A =L with L a positive
iInteger. More generally, this evolution is as well isochronous with period L if 4 is
rational, A=L/M with L and M coprime integers (and, say, L positive).

Let us now perform our standard change of dependent variables, from the 2
variables U;(¢) and u,(¢) to the 2 variables % () and %,(¢). Then the discrete-
time dynamical system characterizing the evolution of the 2 new dependent

variables Xl(f) and Xz(f) reads as follows:
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)?1 —CX —3SX% +SF2(X1)_CF1( Xy~ FZ(Xl))
+ F1(3X1+CX2 _CFZ(Xl)_SFl( X~ FZ(Xl)))’

X, =SX +CX%, _CFZ(X.L)_SFl(XZ _FZ(X_L))+ Fz(;(i) -

These 2 "equations of motion", constitute the new discrete-time dynamical
system. This more complicated system is, via the invertible transformation, just
as solvable as the original, trivial system, and obviously as well isochronous with
period L, if A=L/M with L a positive integer and M a coprime integer. Clearly the
freedom to choose arbitrarily the 2 functions F.(w) and F,(w) entails that this class
of discrete dynamical systems is quite vast. But the multiple convolution of these
functions that occurs in these equations of motion entails that these equations
are generally not very simple.
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Clearly the quantity
_ .2 2

IS a "constant of motion" for the evolution of the original system for the variables
Ul(f) and Uz(f). Likewise the image of this constant under the transformation
from the 2 variables W(¢) and U,(¢) to the 2 variables %(¢) and %(¢) is a

constant of motion for the new evolution of the 2 variables Xl(f) and Xz(f),
reading

K = [Xl - I:1()(2 - Fz(xl))]2 T [Xz B FZ(Xl)]2 '

Note that it depends on the assignment of the 2 functions F.(w) and F.(w), but not
on the number A which also characterizes the discrete-time dynamical system
evolution.



F. Calogero, An invertible transformation and some of its applications, page 35/ 56

The specific value of this constant K depends of course on the initial data

X1(0) and XZ(O). Plotting in the X X, Cartesian plane for various values of K the
curves defined by the formula written above---which might be quite complicated,
but cannot feature any crossing---yields a qualitative assessment of the behavior
of the dynamical system under consideration, each (discrete) trajectory of which
Is of course confined to lie on the curve characterized by the value of K
determined by the initial data. Indeed, if A is a large number, the fact that the
discrete trajectory shall lie on the curve with the relevant value of K---as
determined by the initial data---entails that the discrete evolution shall closely
mimic a continuous evolution along that curve: of course the evolution of the
discrete-time dynamical system shall be periodic if A is rational and nonperiodic
If A isirrational, and in the latter case it will eventually seem to completely cover
the relevant constant-K curve, although of course it shall, after a finite time ¢,
only cover ¢ different points on that curve. For small values of A the discrete
character of the evolution may instead have a more dramatic connotation, with

the moving point characterized by the Cartesian coordinates Xl(f) and Xz(ﬁ)
jumping sequentially from one point of the constant-K curve to another point on
that curve possibly quite far from the previous one. Of course this
phenomenology shall be particularly striking in the case of a rational value of
A=L/M with L a small positive integer (and M a coprime integer).
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Example. Let us make the simple assignments
F(w)=aw?, F,(w)= 8w,

where @ and B are 2 a priori arbitrary numbers. Then the new discrete-time
dynamical system reads as follows:

% =clx —alx- 8% )|-slx, - 8%)
ralsp -l - vl - 32

%, =sx —a(x - xS l+clx, - sx2)+ %

This discrete-time dynamical system is fairly complicated: indeed the right-

hand side of the first equation features a term with the dependent variable X,
raised to the 8-th power, and the right-hand side of the second equation features

a term with the dependent variable X, raised to the 16-th power. In this case the
constant of motion K reads
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2 +(X2 _IBX12)2 .

K = [xl—a'(x2 —,8)(12)2

The dynamical evolution entailed by this model is fairly rich, while being
solvable, and of course isochronous whenever A is an integer (or a rational

number). See the Figure for a display of the trajectory in the X X, Cartesian
plane of this system (with @ = =11 = 6,%,(0) = 0.8,%,(0)=-038 implying
K=3.69566.
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Let us also mention that, if the initial values
- assigned are somewhat larger than those of the
trajectory reported in this Figure, the
corresponding trajectory can reach quite large
- values before returning to the initial values: for

instance the initial values %(0)=3%,(0)=3 yield
- %,(3)=69,%,(3)=4767, with K=1125
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Let us also report a discrete-time dynamical system involving 3 dependent
variables and displaying the asymptotically isochronous phenomenology (see
the somewhat analogous continuous-time dynamical system discussed above).

An asymptotically isochronous discrete-time system involving 3 dependent
variables. Let

0, =u,, U, =u,, 0, =au, —(1+2ac)u, +(a +2c)u,

where @ and A are two (a priori arbitrary) real numbers.
It is easily seen that the general solution of this discrete-time model reads as

follows:
u(0)=Aa’ + Bco{z—il_wj + Csin(z—ll_wj,

u,(£) =, (£ +2), ug(0) = u, (¢ +1)=u (¢ +2),

with A B,C three arbitrary constants (of course easily expressible in terms of the
initial data).



F. Calogero, An invertible transformation and some of its applications, page 39 / 56
Hence the solution is, for arbitrary initial data, isochronous with period L (i.

e., u,(¢+L)=u())if A is rational, A=L/M with L and M coprime integers (and,
say, L positive) and moreover a =1 (if a=-1,itis as well isochronous, with
period L if L is even and 2L if L is odd), and it is asymptotically isochronous (i. e.,
u,(¢+1)-u,(1)=0(a|) as ¢ - @) if A=L/M and |a|<1.

A class of apparently quite less trivial discrete-time dynamical systems is then
obtained via the standard invertible change of variables, from U,U,,U; to %, X%, %,
and viceversa:

% =U +F (U, W), % =U,+F,(X,U,), % =U;+F;(X,%);
U =%~ Fy(%, %), U, =% —F(x,W), u =x-F(u,u).
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It involves the 3 arbitrary functions F,(w,w,), n= 12,3, and it reads:
%, =%, = Gy (X, %, %) + Gy (%, %, %),
X, = %~ Gy (%, %, %) + Gy (%, %, %),
% = (%, %, %) + F(%, %),

where the 5 functions G, are recursively given, one in terms of the other, as
follows:

Gy (%%, %) = F(x,%,),

Gz(Xl,XZ,X3)= FZ(Xl’X3 _Gl(xl’XZ’X3))’

Gs(Xsz’Xs) = Fl(XZ _GZ(X11X21X3)’ X3 _Gl(xl’XZ’XB))’
G4(X11X21X3) = Fl(xe _Gl()(l’XZ’X3)"J()(1’X2’X3))’

G5(X1,X2,X3): Fz(xz _Gz()(l’X2’X3)+G4(X11X2’X3)’J(X1’X2’X3))’

and the function J depends on G,,G,,G; as follows:
3 (%%, %) = [ = Gy(x, %, )|
+ (1+ 20’C)[X2 B GZ(Xl’ X5 Xs)]
+(ar+2¢)[% = Gy(x, %, %)].
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The general solution of this discrete-time model reads as follows:
x(0)=w(0)+ F(u (0 +1u(e+2))
%(0)=u,(+2)+ F,(x () u, (¢ +2)),
x(£) = (¢ +2)+ Fy(x(0) (7)),

u,(¢)=Aa’ + Bcoz{ ngj + Csm( 2776)

L

And clearly this system inherits the same phenomenology---concerning
Isochrony and asymptotic isochrony---of the simple linear model to which it is
related via the invertible transformation, as described above.

With
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i ¥
2

[1§]

The Figure displays the orbit and limit trajectory in the W U, U; Cartesian space
for the original system and the corresponding orbit and limit trajectory in the

X X, X3 Cartesian space for the system obtained via the transformation reported
above with

F(p.a)=p+a-22, F(p.a)=p-a, F(p.g)=p>-q
2

2
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Solvable systems of autonomous
nonlinear PDEsS

Here we start again from a trivially solvable model, and via an invertible
transformation we obtain a new model, also solvable, which looks much less
trivial. For simplicity the treatment is restricted to a system of 2 first-order PDEs
featuring 2 dependent and 2 independent variables.

We take as point of departure the following trivial system of 2 linear PDEs,

¢1,t = ¢2,x’ ¢2,t = ¢1,x d

where the 2 functions @, = #,(x.t) depend on the 2 independent variables X and
t. Here and below subscripted variables indicate partial differentiation with
respect to them. Clearly this system of 2 linear PDEs has the following general
solution:

6,(x0)= ©, (x +1) = &, (x-+1) + &, (x~1),
9.(x) = 0_(x+1)= 0, (x+1) -, (x-1),

where ®,(2) are 2 arbitrary functions of the single variable z.
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We now apply the following invertible transformation:

(// — ¢1 f11(¢2)+ f12(¢2) — ¢2 f21( 1)+ f22(¢/1)
' ¢1 f13(¢2)+ f14(¢2)’ i ¢2 f23( 1)+ f24(¢’1)

&, = Y f14(¢2)_ f12(¢2)’ g, = _Y, f24( 1)_ fzz(wl)
1 W, 1t13(¢2)_ f11(¢2) 2 v, f23( 1)_ f21(¢/1)

These explicit transformations involve 8 a priori arbitrary functions fu (W)
However we now restrict attention to a very specific example (due to Matteo
Sommacal), corresponding to the following assignment:
C,+CcC,+wic,+ccC
)= 1, f0) = & ae WG TG )

2 2

4
+
)= 1, (n)=— & T We),
G G
le(W) = f24(W) =G W, fzz(W) = fza(W) =C, W.
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Then the two functions ¥, =, (xt) satisfy the following system of two
coupled nonlinear PDESs:

wl,t - [awl,x T (ﬁz o az)Wz,x]/ﬁ,
wz,t = (wl,x —a ’ﬂz,x)/ﬂ,
C, (1_¢12)
G, +GC, +§U2)(C1—C2 'Hﬂz)’
(032 —C42)(C1+C2lﬂ1+¢2)

where

a=aly.y,)= (

B )= (o6 v )e )
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The general solution ¢, =¢;(xt).¢, =,(xt) of this system of two PDEs then
reads as follows:

g = &G (66 *C)P. 166 P ~(6C +¢)P, D,
C -G -C +0 6P, —(ce, +6)P +c 0,0, B
_CGtG P
W, CtC, D
where @, =®,(xt) are of course defined as above,
CD+(x+t)ECDl(x+t)+CD2(x—t),
CD_(x+t)ECDl(x+t)—CDz(x—t),

In terms of the 2 arbitrary functions (Dn(z) of the single variable z.
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A solvable nonautonomous PDE

Here we show---as a representative example---how to manufacture a
solvable nonautonomous PDE starting from the trivial (linear) autonomous first-

order PDE
4, (uw) =4, (uw).
the general solution of which reads of course

d(u,w)=F(u+w)
where F(z) is an arbitrary function of the single variable z. We set

plu,w)=y(x,y)

with

X = u fll(W) + le(W) y = W le(x) + fzz(x)
u 1:13(W) + f14(W), W f23(X) + 1:24()() |
u=— X f14(W) B f12(W) W= — y f24(X) B fzz(x)
X flS(W) B f11(W) | y fzs(x) B le(x) |
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It is then a matter of trivial if tedious algebra to ascertain that w(x,y) satisfies
the following (linear) nonautonomous PDE:

g(x y)u, (% y)=h(x y)w,(xy)

with g(x y) and h(x,y) expressed explicitly (by rather complicated formulas not
reported here) in terms of the 8 arbitrary functions f.(z).n=12k=1234.

We limit our presentation to exhibit here one specific example (due to Francois
Leyvraz), corresponding to the assignments

fll(z) = Z, le(Z) = le(Z) =0, f14(z) =1,
le(z) = f24(z) = COS(Z)’ f13(z) = fzz(z) = sin(z) -
Then the linear nonautonomous PDE satisfied by w(xy) reads as follows:

(ycosx+sinx)?(cosx - ysinx)O

8+ y?)+ (- y2)cog2x) - 2ysin(2x)] ¢, (x.y)

2

: Yy COSX + SIinX . :
= 2| (cosx - ysinx)co — |+ (ycosx+sinx)sinx | [
cosx — ysinx

[[(1+ x)(ycosx+sinx)? - x(1+ yz)] w,(xy).
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And its general solution reads as follows:

XCOSX — X ySINnX N Y COSX + SINX
YCOSX+SINX  COSX—YySInX

w(xy)=F

with F(z) an arbitrary function.

On the face of i, the fact that the PDE written above is explicitly solvable
should appear guite nontrivial to anybody who does not know how this finding
has been arrived at; although verifying it is a relatively trivial task.
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Functional equations

Here we report an, apparently nontrivial, functional equation involving 2
functions, as an example of the kind of findings obtainable via this approach. It

n(w(z) +ul(z))+ f(u(z

—h

)

u(z)u(z,)

+u,(z,
+u,(z,

Z,
Z,

( )
5t (2) +w(2,))+ f(w(2)
gfug x(z+2,))+ f,(X,

2,+2, (z
(z+2,))+ f.(x(2

—h

L u(a)
a2 1(z2)(

+ U,
U (2,

u u(z,))’
(2 +2,))
z)+ +2))’

%(z+2,)=t E

f23
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where, in the 2 preceding formulas, firstly Ul(Z) should be replaced by the
following expression in terms of Xl(Z) and UZ(Z),

_ Xl(z) f14(u2(z))_ flz(uz(z))

) ) )

and subsequently Uz(Z) should be replaced by the following expression in terms

of %(2) and %(2),
X (Z) f24( Xl(z) ) B fzz( Xl(z))

U, (Z) - X, (Z) f23(X1(Z))_ f21(X1(Z)),

so that the resulting formulas relate (explicitly, if in a convoluted manner) the

values that the two functions Xl(Z) and Xz(Z) take at the value z=7 +z, of

their argument, to the values they take at z and at z, (where z and z are of
course independent variables taking arbitrary values).
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The (explicit!) Solution(o; tiuse ;u&ct:)ti;)naljaq;?io?ljgdzs) as follows:
7 explb2) fofa)+ fiufaz)
(=] as explbz)f,(az)+ f,(az)
(2)=] fﬂ(exp(bz) f(az)+ f14(az)j
¢ [ob)ifar)+ a2
fﬂ(exp(b 2)f.az)+ fm(az)j "
ot b)) 1 a2
| fz:{ exlb2) f,.(a2)+ f..(a z)]
. f24(exp(bz) f(az)+ flz(az)j I

exbz) f5(az)+ f,,(az)

where a,b are two arbitrary parameters. And note that the 8 functions
f.(w), n=12 k= 1234 appearing in the above functional equation and in its
solution are arbitrary.
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This finding clearly obtains, via the transformations

ul 11 u2 +f12 u2 — 2f21 +f22
e 6l e )

u
U f13(u2)+ 1:14 U, U, 23()(1)+ f24(X1)’

_X f14(u2) — f12(u2) _% 1:24()(1) — f22(xl)
X f13(u2)_ fll(uz)’ X f23(xl)_ f21(xl),

from the two trivial functional equations

u(z +2)=u(z)u(z) u(z +2z)=u,z)+u,z),

whose solutions of course read

u(z)=expbz), u,(z)=az.

ul = u2
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Analytical geometry

The standard invertible transformation

X =u + Fl(UZ)’ X =U, + FZ(Xl) = U, + Fz(u1 T F1(u2))1
U =X ~ Fl(uz) =X~ Fl( X~ FZ(Xl))’ U, =X, — FZ(Xl)

IS an area preserving reparametrization of the Cartesian plane: indeed we
already mentioned that---as it is indeed easy to verify---it entails that the

Jacobian determinant of this change of variables---from U;,U, to X%,X, and

viceversa---is unity, for any arbitrary assignment of the 2 functions F,(w),F,(w)
(this property corresponds---in the Hamiltonian context, see Section 4.3.1---to
the canonical character of the corresponding change of variables).

A representative example of the findings that easily flow from this property is
provided by the following Proposition.
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Proposition: Let C,,C, be 2 arbitrary (real) numbers, and draw, in the XX,
Cartesian plane, the following 4 curves: the curve A going from the point a= (00)
to the point b= (@,c,) and characterized by the equation (a piece of a parabola)

Al X, =G %

the curve B going from the point b= (c,) to the point c=(c, 1+c’c,) and
characterized by the (quartic) equation

B: 1_X1_X2+02X12+C1X22_2C102X12X2+C1022X14:O;

the curve C going from the point c=(c,1+¢’c,) to the point a= (00) and
characterized by the (quartic) equation

C: )(1_C_LX22+2C1C2X12X2_C1022X14 =0;

- - _ . (1.1 (1 ¢)
and the curve D going from the point a= (00) to the point c—[§+z,§+c2(5+zj J

(lying on the curve B) and characterized by the (quartic) equation

: 2 2 2 2,4 _
D: X =%+CGX —GX% +266,X % GG % =0.
Then the region enclosed by the 3 curves A B,C has area 1/2, and the curve D
divides this region in two parts of equal area (see Figure). o
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The proof of this Proposition is an immediate consequence of the fact that, via

the above transformation with F,(w)=c, W the region enclosed by the 3 curves

A B,C corresponds, in the X X, Cartesian plane, to the triangle of vertices

(00),(20),(02) in the u,u, Cartesian plane, and likewise the curve D corresponds
to the segment starting from the vertex a= (00) and bisecting that triangle (see
Figure).
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