An invertible transformation and some of its applications

Francesco Calogero
Dipartimento di Fisica, Università di Roma "La Sapienza" Istituto Nazionale di Fisica Nucleare, Sezione di Roma

Abstract

An explicitly invertible transformation is reported, and several of its applications. This transformation is elementary and therefore all the results obtained via it might be considered trivial; yet the findings described in this report are generally far from appearing trivial until the way they are obtained is revealed. Various contexts can be considered: algebraic and Diophantine equations, nonlinear Sturm-Liouville problems, dynamical systems (with continuous and with discrete time), nonlinear partial differential equations, analytical geometry, functional equations, etc. etc. While this transformation, in one or another context, is certainly known to many, it does not seem to be as universally known as it deserves to be, for instance it is not routinely taught in basic University courses (to the best of our knowledge). Some generalizations of this transformation are also reported.

All these results have been obtained in collaboration with Mario Bruschi, François Leyvraz and Matteo Sommacal.

They are reported in the following 2 papers:
M. Bruschi, F. Calogero, F. Leyvraz and M. Sommacal, "An invertible transformation and some of its applications", J. Nonlinear Math. Phys. (in press); "Generalization of an invertible transformation and examples of its applications" (in preparation).

The explicitly invertible transformation

It consists of a change of variables, involving 2 arbitrary functions $F_{1}(w), F_{2}(w)$, from 2 quantities u_{1}, u_{2}, to 2 quantities x_{1}, x_{2} and viceversa. It reads as follows:

$$
\begin{aligned}
& x_{1}=u_{1}+F_{1}\left(u_{2}\right), x_{2}=u_{2}+F_{2}\left(x_{1}\right)=u_{2}+F_{2}\left(u_{1}+F_{1}\left(u_{2}\right)\right), \\
& u_{1}=x_{1}-F_{1}\left(u_{2}\right)=x_{1}-F_{1}\left(x_{2}-F_{2}\left(x_{1}\right)\right), u_{2}=x_{2}-F_{2}\left(x_{1}\right) .
\end{aligned}
$$

The most remarkable aspect of this transformation is its explicitly invertible character: note that both the direct respectively the inverse changes of variables involve only (albeit also in a nested manner) the 2 arbitrary functions $F_{1}(w), F_{2}(w)$, and not their inverses. This in particular entails that, if the 2 functions $F_{1}(w), F_{2}(w)$ are one-valued (as we hereafter assume), both the direct and inverse changes of variables are one-valued; if the 2 functions $F_{1}(w), F_{2}(w)$ are entire, this property is inherited by both the direct and inverse changes of variables; if the 2 functions $F_{1}(w), F_{2}(w)$ are polynomials (of arbitrary degree), both the expressions of x_{1}, x_{2} in terms of u_{1}, u_{2}, and the expressions of u_{1}, u_{2}, in terms of x_{1}, x_{2}, are as well polynomial.

Remark: the above transformation can be obtained as a composition of two triangular "seed" transformations:

$$
\begin{aligned}
& y_{1}=u_{1}+F_{1}\left(u_{2}\right), y_{2}=u_{2} \\
& x_{1}=y_{1}, x_{2}=y_{2}+F_{2}\left(y_{1}\right)
\end{aligned}
$$

clearly entailing

$$
\begin{aligned}
& x_{1}=u_{1}+F_{1}\left(u_{2}\right) \\
& x_{2}=u_{2}+F_{2}\left(x_{1}\right)=u_{2}+F_{2}\left(u_{1}+F_{1}\left(u_{2}\right)\right)
\end{aligned}
$$

It can be moreover easily checked that this is an area-preserving transformation:

$$
\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial u_{1}} & \frac{\partial x_{1}}{\partial u_{2}} \\
\frac{\partial x_{2}}{\partial u_{1}} & \frac{\partial x_{21}}{\partial u_{21}}
\end{array}\right|=1
$$

F. Calogero, An invertible transformation and some of its applications, page 5 / 56

Example: for instance for

$$
F_{1}(w)=c_{1} w^{2}, F_{2}(w)=c_{2} w^{2},
$$

the direct and inverse transformations read as follows:

$$
\begin{aligned}
& x_{1}=u_{1}+c_{1} u_{2}^{2}, x_{2}=u_{2}+c_{2}\left(u_{1}+c_{1} u_{2}^{2}\right)^{2}, \\
& u_{1}=x_{1}-c_{1}\left(x_{2}-c_{2} x_{1}^{2}\right)^{2}, u_{2}=x_{2}-c_{2} x_{1}^{2} .
\end{aligned}
$$

Generalizations

A multinested approach: 2 variables, more than 2 arbitrary functions

3 arbitrary functions

$$
\begin{aligned}
& x_{1}=u_{1}+F_{1}\left(u_{2}\right)+F_{3}\left(u_{2}+F_{2}\left(u_{1}+F_{1}\left(u_{2}\right)\right)\right), \\
& x_{2}=u_{2}+F_{2}\left(u_{1}+F_{1}\left(u_{2}\right)\right) \\
& u_{1}=x_{1}-F_{3}\left(x_{2}\right)-F_{1}\left(x_{2}-F_{2}\left(x_{1}-F_{3}\left(x_{2}\right)\right)\right), \\
& u_{2}=x_{2}-F_{2}\left(x_{1}-F_{3}\left(x_{2}\right)\right) .
\end{aligned}
$$

4 arbitrary functions

$$
\begin{aligned}
& x_{1}=u_{1}+F_{1}\left(u_{2}\right)+F_{3}\left(u_{2}+F_{2}\left(u_{1}+F_{1}\left(u_{2}\right)\right)\right), \\
& x_{2}=u_{2}+F_{2}\left(u_{1}+F_{1}\left(u_{2}\right)\right) \\
& +F_{4}\left(u_{1}+F_{1}\left(u_{2}\right)\right)+F_{3}\left(u_{2}+F_{2}\left(u_{1}+F_{1}\left(u_{2}\right)\right)\right), \\
& u_{1}=x_{1}-F_{3}\left(x_{2}-F_{4}\left(x_{1}\right)\right)-F_{1}\left(x_{2}-F_{4}\left(x_{1}\right)\right) \\
& -F_{2}\left(x_{2}-F_{3}\left(x_{2}-F_{4}\left(x_{1}\right)\right)\right), \\
& u_{2}=x_{2}-F_{4}\left(x_{1}\right)-F_{2}\left(x_{1}-F_{3}\left(x_{2}-F_{4}\left(x_{1}\right)\right)\right) .
\end{aligned}
$$

N arbitrary functions

Can be written recursively, as extrapolation of those written above.

More variables
 A direct approach

$N=3$:

$$
\begin{aligned}
& x_{1}=u_{1}+F_{1}\left(u_{2}, u_{3}\right), x_{2}=u_{2}+F_{2}\left(x_{1}, u_{3}\right), x_{3}=u_{3}+F_{3}\left(x_{1}, x_{2}\right) ; \\
& u_{3}=x_{3}-F_{3}\left(x_{1}, x_{2}\right), u_{2}=x_{2}-F_{2}\left(x_{1}, u_{3}\right), u_{1}=x_{1}-F_{1}\left(u_{2}, u_{3}\right) .
\end{aligned}
$$

$N=4$:

$$
\begin{aligned}
& x_{1}=u_{1}+F_{1}\left(u_{2}, u_{3}, u_{4}\right), x_{2}=u_{2}+F_{2}\left(x_{1}, u_{3}, u_{4}\right), \\
& x_{3}=u_{3}+F_{3}\left(x_{1}, x_{2}, u_{4}\right), x_{4}=u_{4}+F_{4}\left(x_{1}, x_{2}, x_{3}\right), \\
& u_{4}=x_{4}-F_{4}\left(x_{1}, x_{2}, x_{3}\right), u_{3}=x_{3}-F_{3}\left(x_{1}, x_{2}, u_{4}\right), \\
& u_{2}=x_{2}-F_{2}\left(x_{1}, u_{3}, u_{4}\right), u_{1}=x_{1}-F_{1}\left(u_{2}, u_{3}, u_{4}\right) .
\end{aligned}
$$

And the formulas for arbitrary N are then obvious.

Matrices

This generalization to more variables (say, to N^{2} variables) is quite straightforward, amounting to a systematic replacement of scalars with $N \times N$ matrices. Of course while doing so appropriate account must be taken of the noncommutativity of matrices.

A more general generalization

(reported here for simplicity for only 2 variables)

To arrive at our "more general" generalization we take as point of departure two assumedly known invertible transformations, which we write in operatorial form as follows:

$$
z=T_{n} \cdot y, y=T_{n}^{-1} \cdot z, \quad n=1,2, \ldots
$$

And let us assume that the direct and inverse versions of each of these transformations depend on an arbitrary number of parameters $f_{n k}$, which themselves may be functions of another variable u :

$$
T_{n} \equiv T_{n}\left(f_{n k}\right), f_{n k} \equiv f_{n k}(u) .
$$

For instance a simple example of invertible transformation ("Möbius"), from y to z and viceversa, reads as follows:

$$
z=\frac{y f_{1}(u)+f_{2}(u)}{y f_{3}(u)+f_{4}(u)}, y=\frac{z f_{4}(u)-f_{2}(u)}{z f_{3}(u)-f_{1}(u)},
$$

where the 4 a priori arbitrary functions $f_{n k}(u)$ are only restricted by the condition that the combination $D(u)=f_{1}(u) f_{4}(u)-f_{2}(u) f_{3}(u)$ not vanish identically.

Let us now consider the transformation---from 2 quantities u_{1}, u_{2} to 2 quantities x_{1}, x_{2}---reading as follows:

$$
\begin{aligned}
& x_{1}=T_{1}\left(f_{1 k}\left(u_{2}\right)\right) \cdot u_{1} \\
& x_{2}=T_{2}\left(f_{2 k}\left(x_{1}\right)\right) \cdot u_{2}=T_{2}\left(f_{2 k}\left(T_{1}\left(f_{1 k}\left(u_{2}\right)\right) \cdot u_{1}\right)\right) \cdot u_{2}
\end{aligned}
$$

which---under the above assumptions---can clearly be explicitly inverted, to read

$$
\begin{aligned}
& u_{2}=T_{2}^{-1}\left(f_{2 k}\left(x_{1}\right)\right) \cdot x_{2} \\
& u_{1}=T_{1}^{-1}\left(f_{1 k}\left(u_{2}\right)\right) \cdot x_{1}=T_{1}^{-1}\left(f_{1 k}\left(T_{2}^{-1}\left(f_{2 k}\left(x_{1}\right)\right) \cdot x_{2}\right)\right) \cdot x_{1}
\end{aligned}
$$

Note that both the direct transformation and the inverse transformation involve the functions $f_{n k}(u)$ but not their inverses.

For instance if the 2 transformations T_{n} are both of Möbius type, then the direct transformation reads

$$
x_{1}=\frac{u_{1} f_{11}\left(u_{2}\right)+f_{12}\left(u_{2}\right)}{u_{1} f_{13}\left(u_{2}\right)+f_{14}\left(u_{2}\right)}, x_{2}=\frac{u_{2} f_{21}\left(x_{1}\right)+f_{22}\left(x_{1}\right)}{u_{2} f_{23}\left(x_{1}\right)+f_{24}\left(x_{1}\right)}
$$

and the inverse transformation reads

$$
u_{1}=-\frac{x_{1} f_{14}\left(u_{2}\right)-f_{12}\left(u_{2}\right)}{x_{1} f_{13}\left(u_{2}\right)-f_{11}\left(u_{2}\right)}, u_{2}=-\frac{x_{2} f_{24}\left(x_{1}\right)-f_{22}\left(x_{1}\right)}{x_{2} f_{23}\left(x_{1}\right)-f_{21}\left(x_{1}\right)} .
$$

Note that these explicit transformations involve 8 a priori arbitrary functions $f_{n k}(w)$.

Remark: above we assumed the functions $f_{n k}(w)$ to depend on a single argument, and the generalized transformation to relate 2 quantities u_{1}, u_{2} to 2 quantities x_{1}, x_{2} and viceversa. The extension of this treatment to explicitly invertible transformations from N quantities u_{n} to N quantities x_{n}, and viceversa, with $N>2$, is rather obvious; they will involve functions of $N-1$ arguments.

Remark: the various generalizations described above can of course be combined.

Applications: some representative examples

Algebraic and Diophantine equations

Assume that the 2 quantities u_{1}, u_{2} are the solutions of the following 2 quite trivial algebraic equations:

$$
u_{1}=u_{2}, u_{1} u_{2}+\alpha u_{1}+\beta u_{2}+\gamma=0
$$

obviously implying

$$
u_{1}=u_{2}=u_{ \pm}=\frac{1}{2}\left(-\alpha-\beta \pm \sqrt{(\alpha+\beta)^{2}-4 \gamma}\right) .
$$

Then, by using the simplest of our invertible transformations, we conclude that the following system of 2 equations in the 2 unknowns x_{1}, x_{2},

$$
\begin{aligned}
& \quad x_{1}-F_{1}\left(x_{2}-F_{2}\left(x_{1}\right)\right)=x_{2}-F_{2}\left(x_{1}\right) \\
& {\left[x_{1}-F_{1}\left(x_{2}-F_{2}\left(x_{1}\right)\right)\right]\left[x_{2}-F_{2}\left(x_{1}\right)\right]} \\
& +\alpha\left[x_{1}-F_{1}\left(x_{2}-F_{2}\left(x_{1}\right)\right)\right]+\beta\left[x_{2}-F_{2}\left(x_{1}\right)\right]+\gamma=0
\end{aligned}
$$

where $F_{1}(w), F_{2}(w)$ are 2 arbitrary functions, has the two solutions

$$
x_{1}=u_{ \pm}+F_{1}\left(u_{ \pm}\right), x_{2}=u_{ \pm}+F_{2}\left(u_{ \pm}+F_{1}\left(u_{ \pm}\right)\right)
$$

Remark: if $\alpha+\beta=j,(\alpha+\beta)^{2}-4 \gamma=k^{2}$ with j, k two arbitrary integers, and the 2 functions $F_{1}(w), F_{2}(w)$ are two arbitrary polynomials with integer coefficients, the above system of 2 equations in the 2 unknowns x_{1}, x_{2} is Diophantine!

Nonlinear Sturm-Liouville problems

An example of highly nonlinear Sturm-Liouville problem reads as follows:

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2}+x_{1}\left[(4 \alpha \lambda-\beta) x_{1}+4 \alpha z x_{2}\right]-4 \alpha\left(\beta z x_{1}^{3}+2 \alpha \lambda x_{1} x_{2}^{2}+\alpha z x_{2}^{3}\right) \\
& +4 \alpha^{2}\left[x_{2}\left(4 \beta \lambda x_{1}^{3}+3 \beta z x_{1}^{2} x_{2}+\alpha \lambda x_{2}^{3}\right)-\beta x_{1}^{2}\left(2 \beta \lambda x_{1}^{3}+3 \beta z x_{1}^{2} x_{2}+\alpha \lambda x_{2}^{3}\right)\right. \\
& \left.+\beta^{2} x_{1}^{4}\left(\beta z x_{1}^{2}+6 \alpha \lambda x_{2}^{2}\right)-4 \alpha \beta^{3} \lambda x_{1}^{6} x_{2}+\alpha \beta^{4} \lambda x_{1}^{8}\right], \\
& x_{2}^{\prime}=2\left(\lambda x_{1}+z x_{2}-\beta z x_{1}^{2}-\alpha \lambda x_{2}^{2}+2 \alpha \beta \lambda x_{1}^{2} x_{2}-\alpha \beta^{2} \lambda x_{1}^{4}\right)+2 \beta x_{1} x_{1}^{\prime} .
\end{aligned}
$$

Here and below z is the (independent) variable, $x_{1} \equiv x_{1}(z), x_{2} \equiv x_{2}(z)$ are two functions of this variable, appended primes indicate differentiation with respect to this variable, α, β are two arbitrary constants and λ is the eigenvalue of the nonlinear Sturm-Liouville problem characterized by this system of two first-order nonlinear ODEs and the requirement that the eigenfunctions $x_{1}(z), x_{2}(z)$ be polynomials in the variable z. The solution of this problem is that the eigenvalues λ are the nonnegative integers, $\lambda=\ell, \ell=0,1,2, \ldots$, and the corresponding eigenfunctions are

$$
\begin{gathered}
x_{1}(z)=H_{\ell}(z)+4 \alpha\left[\ell H_{\ell-1}(z)\right]^{2} \\
x_{2}(z)=2 \ell H_{\ell-1}(z)+\beta\left\{H_{\ell}(z)+4 \alpha\left[\ell H_{\ell-1}(z)\right]^{2}\right\} .
\end{gathered}
$$

Here and below $H_{\ell}(z)$ is the Hermite polynomial of degree ℓ in the variable z.
These findings are obtained from the standard linear Sturm-Liouville problem characterizing Hermite polynomials, reading

$$
u^{\prime \prime}-2 z u^{\prime}-2 \lambda u=0, u \equiv u(z)
$$

And---via the requirement that $u(z)$ be a polynomial in z entailing $\lambda=\ell, \ell=0,1,2, \ldots ; u(z)=H_{\ell}(z)$---by setting $u(z)=u_{1}(z), u^{\prime}(z)=u_{2}(z)$ and by then relating $u_{1}(z), u_{2}(z)$ to $x_{1}(z), x_{2}(z)$ via our standard invertible transformation.

Dynamical systems

Let us recall that a dynamical system consists of a finite but otherwise a priori arbitrary number N of (first-order) Ordinary Differential Equations (ODEs), say

$$
\dot{x}_{n}=f_{n}(\underline{x}), n=1,2, \ldots, N ; \underline{\dot{x}}=\underline{f}(\underline{x}),
$$

where the N (real) "dependent variables" $x_{n} \equiv x_{n}(t)$ are functions of the (real) "independent variable" t ("time"), superimposed dots indicate timedifferentiations, \underline{x} is the N-vector of components $x_{n}, \underline{x} \equiv\left(x_{1}, \ldots, x_{N}\right)$, and the N functions $f_{n}(\underline{x})$ are (a priori arbitrarily) assigned.

Here for simplicity we restrict attention to systems with $N=2$.
Consider the following elementary dynamical system characterizing the evolution of the 2 variables $u_{1} \equiv u_{1}(t), u_{2} \equiv u_{2}(t)$, depending on the independent variable t ("time"):

$$
\dot{u}_{1}=u_{2}, \dot{u}_{2}=-u_{1}
$$

The general solution of this trivial system of 2 ODEs is

$$
\begin{aligned}
& u_{1}(t)=A \sin (t+\theta) \\
& u_{2}(t)=A \cos (t+\theta)
\end{aligned}
$$

Let us now apply our standard invertible transformation relating $u_{1} \equiv u_{1}(t), u_{2} \equiv u_{2}(t)$ to $x_{1} \equiv x_{1}(t), x_{2} \equiv x_{2}(t)$ and viceversa. One thereby easily gets the following new dynamical system:
F. Calogero, An invertible transformation and some of its applications, page 21 / 56

$$
\begin{aligned}
& \dot{x}_{1}=x_{2}-F_{2}\left(x_{1}\right) \\
& -F_{1}^{\prime}\left(x_{2}-F_{2}\left(x_{1}\right)\right)\left[x_{1}-F_{1}\left(x_{2}-F_{2}\left(x_{1}\right)\right)\right] \\
& \dot{x}_{2}=-x_{1}+F_{1}\left(x_{2}-F_{2}\left(x_{1}\right)\right) \\
& +F_{2}^{\prime}\left(x_{1}\right)\left\{x_{2}-F_{2}\left(x_{1}\right)-F_{1}^{\prime}\left(x_{2}-F_{2}\left(x_{1}\right)\right) .\right. \\
& \left.\cdot\left[x_{1}-F_{1}\left(x_{2}-F_{2}\left(x_{1}\right)\right)\right]\right\} .
\end{aligned}
$$

And the general solution of this dynamical system reads as follows:

$$
\begin{aligned}
& x_{1}(t)=A \sin (t+\theta)+F_{1}(A \cos (\mathrm{t}+\theta)), \\
& x_{2}(t)=A \cos (t+\theta) \\
& +F_{2}\left(A \sin (t+\theta)+F_{1}(A \cos (\mathrm{t}+\theta))\right)
\end{aligned}
$$

Note that this implies that the dynamical system written above (with arbitrary $\left.F_{1}(w), F_{2}(w)\right)$ is isochronous: all its solutions are periodic with period $T=2 \pi$.

Another simple and instructive case is that obtained, in an analogous manner, from the elementary dynamical system

$$
\dot{u}_{1}=u_{2}, \dot{u}_{2}=u_{3}, \dot{u}_{3}=-\left(\rho \omega^{2} u_{1}+\omega^{2} u_{2}+\rho u_{3}\right)
$$

the general solution of which reads

$$
\begin{gathered}
u_{1}(t)=A \sin (\omega t+\theta)+B \exp (-\rho t), \\
u_{2}(t)=A \omega \cos (\omega t+\theta)-B \rho \exp (-\rho t), \\
u_{3}(t)=-A \omega^{2} \sin (\omega t+\theta)+B \rho^{2} \exp (-\rho t)
\end{gathered}
$$

Here ω and ρ are two arbitrary constants, and if they are both real and ρ is positive, $\rho>0$, then this general solution ---where A, B, θ are 3 arbitrary constants---is asymptotically isochronous, namely it becomes periodic in the remote future with the fixed period $T=2 \pi / \omega$, up to corrections vanishing exponentially, of order $\exp (-\rho t)$.

The corresponding system obtained via the simple invertible transformation

$$
\begin{aligned}
& x_{1}=u_{1}+F_{1}\left(u_{2}, u_{3}\right), x_{2}=u_{2}+F_{2}\left(x_{1}, u_{3}\right), x_{3}=u_{3}+F_{3}\left(x_{1}, x_{2}\right), \\
& u_{3}=x_{3}-F_{3}\left(x_{1}, x_{2}\right), u_{2}=x_{2}-F_{2}\left(x_{1}, u_{3}\right), u_{1}=x_{1}-F_{1}\left(u_{2}, u_{3}\right),
\end{aligned}
$$

reads as follows:

$$
\begin{aligned}
& \dot{x}_{1}=u_{2}+F_{1,1}\left(u_{2}, u_{3}\right)-F_{1,2}\left(u_{2}, u_{3}\right)\left(\rho \omega^{2} u_{1}+\omega^{2} u_{2}+\rho u_{3}\right) \\
& \dot{x}_{2}=u_{3}+F_{2,1}\left(x_{1}, u_{3}\right) \dot{x}_{1}-F_{2,1}\left(x_{1}, u_{3}\right)\left(\rho \omega^{2} u_{1}+\omega^{2} u_{2}+\rho u_{3}\right) \\
& \dot{x}_{3}=-\left(\rho \omega^{2} u_{1}+\omega^{2} u_{2}+\rho u_{3}\right)+F_{3,1}\left(x_{1}, x_{2}\right) \dot{x}_{1}-F_{3,2}\left(x_{1}, x_{2}\right) \dot{x}_{2} \\
& \text { with } \\
& \qquad F_{n, k}\left(w_{1}, w_{2}\right) \equiv \frac{\partial F_{n}\left(w_{1}, w_{2}\right)}{\partial w_{k}}, n=1,2,3, k=1,2
\end{aligned}
$$

and u_{1}, u_{2}, u_{3} given in terms of x_{1}, x_{2}, x_{3} by the corresponding inverse transformation, see above.

And it is clear that the general solution of this system is asymptotically isochronous, indeed its explicit expression reads as follows:

$$
\begin{aligned}
& x_{1}(t)=u_{1}(t)+F_{1}\left(u_{2}(t), u_{3}(t)\right), \\
& x_{2}(t)=u_{2}(t)+F_{2}\left(x_{1}(t), u_{3}(t)\right), \\
& x_{3}(t)=u_{3}(t)+F_{3}\left(x_{1}(t), x_{2}(t)\right),
\end{aligned}
$$

with

$$
\begin{gathered}
u_{1}(t)=A \sin (\omega t+\theta)+B \exp (-\rho t) \\
u_{2}(t)=A \omega \cos (\omega t+\theta)-B \rho \exp (-\rho t) \\
u_{3}(t)=-A \omega^{2} \sin (\omega t+\theta)+B \rho^{2} \exp (-\rho t)
\end{gathered}
$$

Hamiltonian systems

The class of Hamiltonian dynamical systems is characterized by the system of 2 ODEs

$$
\dot{q}=\frac{\partial h(p, q)}{\partial p}, \dot{p}=-\frac{\partial h(p, q)}{\partial q}
$$

where the Hamiltonian function $h(p, q)$ is a priori arbitrary. Note that we are restricting here, for simplicity, attention to the case of a single canonical coordinate q and correspondingly a single canonical momentum. The fact to be highlighted is that, in this context, the standard invertible transformation---say, from $q \equiv u_{1}$ and $p \equiv u_{2}$ to new canonical variables $Q \equiv x_{1}$ and $P \equiv x_{2}$, hence reading

$$
\begin{aligned}
& Q=q+F_{1}(p), P=p+F_{2}(Q)=p+F_{2}\left(q+F_{1}(p)\right) \\
& q=Q-F_{1}(p)=Q-F_{1}\left(P-F_{2}(Q)\right), \quad p=P-F_{2}(Q)
\end{aligned}
$$

---is canonical, namely it leads to new equations of motion which retain the Hamiltonian form,

$$
\dot{Q}=\frac{\partial H(P, Q)}{\partial P}, \dot{P}=-\frac{\partial H(P, Q)}{\partial Q},
$$

with

$$
H(P, Q)=h(p(P,, Q), q(P, Q))
$$

where the functions $p(P, Q), q(P, Q)$ are of course provided by the standard transformation formulas indicated above, with the identification $q \equiv u_{1}, p \equiv u_{2}$ and $Q \equiv x_{1}, P \equiv x_{2}\left(\right.$ or $\left.Q \equiv x_{2}, P \equiv x_{1}\right)$.

One can thereby manufacture, for instance, a multitude of isochronous Hamiltonian systems, such as

$$
\begin{aligned}
& H(P, Q)=\frac{1}{2}\left\{\left(P-\beta_{0}-\beta_{1} Q-\beta_{2} Q^{2}\right)^{2}\right. \\
& +\left[Q-\alpha_{0}-\alpha_{1}\left(P-\beta_{0}-\beta_{1} Q-\beta_{2} Q^{2}\right)\right. \\
& \left.\left.-\alpha_{2}\left(P-\beta_{0}-\beta_{1} Q-\beta_{2} Q^{2}\right)^{2}\right]^{2}\right\},
\end{aligned}
$$

which clearly obtains from the harmonic oscillator Hamiltonian $h(p, q)=\left(p^{2}+q^{2}\right) / 2$ via the canonical transformation written above, and moreover with the assignments

$$
F_{1}(w)=\alpha_{0}+\alpha_{1} w+\alpha_{2} w^{2}, F_{2}(w)=\beta_{0}+\beta_{1} w+\beta_{2} w^{2}
$$

Hence it features solutions which are all periodic with period 2π (and which can be easily written quite explicitly).

Remark. An interesting related issue is whether these Hamiltonians, after quantization, feature an equispaced spectrum. This may well depend on the specific prescription employed to make the transition from the classical to the quantal Hamiltonian. And to what extent are the corresponding stationary Schroedinger equations explicitly solvable?

Discrete-time dynamical systems

(in particular, isochronous and asymptotically isochronous examples)

Let us recall that a discrete-time dynamical system---or, equivalently, a multidimensional map---is characterized by a set of N "dependent variables" x_{n}, which are functions of a "discrete-time" independent variable ℓ taking (here and hereafter) nonnegative integer values, $x_{n} \equiv x_{n}(\ell), \ell=0,1,2, \ldots$, and which evolve in discrete time as follows:

$$
\tilde{x}_{n}=f_{n}(\underline{x}), n=1, \ldots, N ; \underline{\tilde{x}}=\underline{f}(\underline{x})
$$

The notation here is analogous to that used above for standard (i. e., continuous-time) dynamical systems, except that now (and hereafter) superimposed tildes indicate that the independent variable has been advanced by one unit,

$$
\tilde{x}_{n} \equiv \tilde{x}_{n}(\ell) \equiv x_{n}(\ell+1), n=1, \ldots, N .
$$

A discrete-time dynamical system is called isochronous if there exists an open, fully-dimensional set of initial data $x_{n}(0)$ yielding solutions which are completely periodic with a fixed period L,

$$
\begin{aligned}
& x_{n}(\ell+L)=x_{n}(\ell), n=1, \ldots, N ; \\
& \underline{x}(\ell+L)=\underline{x}(\ell)
\end{aligned}
$$

where L is of course now a fixed positive integer (independent of the initial data). The isochronous discrete-time dynamical systems that we consider below are such that this relation holds for arbitrary initial data.

Several techniques to manufacture isochronous continuous-time dynamical systems are available, in addition to that described above, based on our invertible transformation. Hence a plethora of such isochronous models is known. But no analogous techniques are---to the best of my knowledge--available to manufacture discrete-time isochronous dynamical systems (see, however, my very recent paper entitled "The discrete-time goldfish", submitted to J. Math. Phys. on September 18, 2010). The invertible transformations described above allow us to manufacture such systems by taking as starting point a trivial discrete-time isochronous system, in analogy to the procedure applied above in the context of continuous-time dynamical systems.

Again, in order to illustrate this approach in the simplest context, below we mainly restrict consideration to two-dimensional systems, which moreover allow neat graphical representations of their evolution, taking place in a plane. But we also discuss below---in analogy to what we did in the preceding section---a tridimensional example, displaying the possibility to manufacture solvable discrete-time systems that are asymptotically isochronous.

So, to begin with let us start from the following quite simple discrete-time 2dimensional dynamical system:

$$
\tilde{u}_{1}=c u_{1}-s u_{2}, \tilde{u}_{2}=s u_{1}+c u_{2}
$$

Here and throughout the discussion of discrete-time systems we use the shorthand notation

$$
c \equiv \cos \left(\frac{2 \pi}{\lambda}\right), s \equiv \sin \left(\frac{2 \pi}{\lambda}\right),
$$

so that, at every time step, the two-vector $\underline{u}(\ell)$ of which the 2 dependent variables $u_{1}(\ell)$ and $u_{2}(\ell)$ are the 2 components makes a counterclockwise rotation, by the angle $2 \pi / \lambda$, in the $u_{1} u_{2}$ Cartesian plane.

This evolution is obviously solvable, since clearly the two-vector $\underline{u}(\ell)$ obtains from the two-vector $\underline{u}(0)$ by performing a counterclockwise rotation, in the $u_{1} u_{2}$ Cartesian plane, by the angle $2 \pi \ell / \lambda$: hence the corresponding formulas expressing $u_{1}(\ell)$ and $u_{2}(\ell)$ in terms of the initial data $u_{1}(0)$ and $u_{2}(0)$ are simply

$$
\begin{aligned}
& u_{1}(\ell)=\cos \left(\frac{2 \pi \ell}{L}\right) u_{1}(0)-\sin \left(\frac{2 \pi \ell}{L}\right) u_{2}(0) \\
& u_{2}(\ell)=\sin \left(\frac{2 \pi \ell}{L}\right) u_{1}(0)+\cos \left(\frac{2 \pi \ell}{L}\right) u_{2}(0)
\end{aligned}
$$

Clearly this evolution is isochronous with period L if $\lambda=L$ with L a positive integer. More generally, this evolution is as well isochronous with period L if λ is rational, $\lambda=L / M$ with L and M coprime integers (and, say, L positive).

Let us now perform our standard change of dependent variables, from the 2 variables $u_{1}(\ell)$ and $u_{2}(\ell)$ to the 2 variables $x_{1}(\ell)$ and $x_{2}(\ell)$. Then the discretetime dynamical system characterizing the evolution of the 2 new dependent variables $x_{1}(\ell)$ and $x_{2}(\ell)$ reads as follows:

$$
\begin{aligned}
& \tilde{x}_{1}=c x_{1}-s x_{2}+s F_{2}\left(x_{1}\right)-c F_{1}\left(x_{2}-F_{2}\left(x_{1}\right)\right) \\
& +F_{1}\left(s x_{1}+c x_{2}-c F_{2}\left(x_{1}\right)-s F_{1}\left(x_{2}-F_{2}\left(x_{1}\right)\right)\right) \\
& \tilde{x}_{2}=s x_{1}+c x_{2}-c F_{2}\left(x_{1}\right)-s F_{1}\left(x_{2}-F_{2}\left(x_{1}\right)\right)+F_{2}\left(\tilde{x}_{1}\right) .
\end{aligned}
$$

These 2 "equations of motion", constitute the new discrete-time dynamical system. This more complicated system is, via the invertible transformation, just as solvable as the original, trivial system, and obviously as well isochronous with period L, if $\lambda=L / M$ with L a positive integer and M a coprime integer. Clearly the freedom to choose arbitrarily the 2 functions $F_{1}(w)$ and $F_{2}(w)$ entails that this class of discrete dynamical systems is quite vast. But the multiple convolution of these functions that occurs in these equations of motion entails that these equations are generally not very simple.

Clearly the quantity

$$
K=u_{1}^{2}+u_{2}^{2}
$$

is a "constant of motion" for the evolution of the original system for the variables $u_{1}(\ell)$ and $u_{2}(\ell)$. Likewise the image of this constant under the transformation from the 2 variables $u_{1}(\ell)$ and $u_{2}(\ell)$ to the 2 variables $x_{1}(\ell)$ and $x_{2}(\ell)$ is a constant of motion for the new evolution of the 2 variables $x_{1}(\ell)$ and $x_{2}(\ell)$, reading

$$
K=\left[x_{1}-F_{1}\left(x_{2}-F_{2}\left(x_{1}\right)\right)\right]^{2}+\left[x_{2}-F_{2}\left(x_{1}\right)\right]^{2}
$$

Note that it depends on the assignment of the 2 functions $F_{1}(w)$ and $F_{2}(w)$, but not on the number λ which also characterizes the discrete-time dynamical system evolution.

The specific value of this constant K depends of course on the initial data $x_{1}(0)$ and $x_{2}(0)$. Plotting in the $x_{1} x_{2}$ Cartesian plane for various values of K the curves defined by the formula written above---which might be quite complicated, but cannot feature any crossing---yields a qualitative assessment of the behavior of the dynamical system under consideration, each (discrete) trajectory of which is of course confined to lie on the curve characterized by the value of K determined by the initial data. Indeed, if λ is a large number, the fact that the discrete trajectory shall lie on the curve with the relevant value of K---as determined by the initial data---entails that the discrete evolution shall closely mimic a continuous evolution along that curve: of course the evolution of the discrete-time dynamical system shall be periodic if λ is rational and nonperiodic if λ is irrational, and in the latter case it will eventually seem to completely cover the relevant constant- K curve, although of course it shall, after a finite time ℓ, only cover ℓ different points on that curve. For small values of λ the discrete character of the evolution may instead have a more dramatic connotation, with the moving point characterized by the Cartesian coordinates $x_{1}(\ell)$ and $x_{2}(\ell)$ jumping sequentially from one point of the constant- K curve to another point on that curve possibly quite far from the previous one. Of course this phenomenology shall be particularly striking in the case of a rational value of $\lambda=L / M$ with L a small positive integer (and M a coprime integer).

Example. Let us make the simple assignments

$$
F_{1}(w)=\alpha w^{2}, F_{2}(w)=\beta w^{2}
$$

where α and β are 2 a priori arbitrary numbers. Then the new discrete-time dynamical system reads as follows:

$$
\begin{aligned}
& \tilde{x}_{1}=c\left[x_{1}-\alpha\left(x_{2}-\beta x_{1}^{2}\right)^{2}\right]-s\left(x_{2}-\beta x_{1}^{2}\right) \\
& \quad+\alpha\left\{s\left[x_{1}-\alpha\left(x_{2}-\beta x_{1}^{2}\right)^{2}\right]+c\left(x_{2}-\beta x_{1}^{2}\right)\right\}^{2} \\
& \tilde{x}_{2}=s\left[x_{1}-\alpha\left(x_{2}-\beta x_{1}^{2}\right)^{2}\right]+c\left(x_{2}-\beta x_{1}^{2}\right)+\beta \tilde{x}_{1}^{2}
\end{aligned}
$$

This discrete-time dynamical system is fairly complicated: indeed the righthand side of the first equation features a term with the dependent variable x_{1} raised to the 8 -th power, and the right-hand side of the second equation features a term with the dependent variable x_{1} raised to the 16 -th power. In this case the constant of motion K reads

$$
K=\left[x_{1}-\alpha\left(x_{2}-\beta x_{1}^{2}\right)^{2}\right]^{2}+\left(x_{2}-\beta x_{1}^{2}\right)^{2}
$$

The dynamical evolution entailed by this model is fairly rich, while being solvable, and of course isochronous whenever λ is an integer (or a rational number). See the Figure for a display of the trajectory in the $x_{1} x_{2}$ Cartesian plane of this system (with $\alpha=\beta=1, \lambda=6, x_{1}(0)=0.8, x_{2}(0)=-0.8$ implying $K=3.69566$.

Let us also mention that, if the initial values assigned are somewhat larger than those of the trajectory reported in this Figure, the corresponding trajectory can reach quite large values before returning to the initial values: for instance the initial values $x_{1}(0)=3, x_{2}(0)=3$ yield $x_{1}(3)=69, x_{2}(3)=4767$, with $K=1125$.

Let us also report a discrete-time dynamical system involving 3 dependent variables and displaying the asymptotically isochronous phenomenology (see the somewhat analogous continuous-time dynamical system discussed above).

An asymptotically isochronous discrete-time system involving 3 dependent variables. Let

$$
\tilde{u}_{1}=u_{2}, \tilde{u}_{2}=u_{3}, \tilde{u}_{3}=\alpha u_{1}-(1+2 \alpha c) u_{2}+(\alpha+2 c) u_{3}
$$

where α and λ are two (a priori arbitrary) real numbers.
It is easily seen that the general solution of this discrete-time model reads as follows:

$$
\begin{aligned}
& u_{1}(\ell)=A \alpha^{\ell}+B \cos \left(\frac{2 \pi \ell}{L}\right)+C \sin \left(\frac{2 \pi \ell}{L}\right) \\
& u_{2}(\ell)=u_{1}(\ell+1), u_{3}(\ell)=u_{2}(\ell+1)=u_{1}(\ell+2)
\end{aligned}
$$

with A, B, C three arbitrary constants (of course easily expressible in terms of the initial data).

Hence the solution is, for arbitrary initial data, isochronous with period L (i. e., $u_{n}(\ell+L)=u_{n}(\ell)$ if λ is rational, $\lambda=L / M$ with L and M coprime integers (and, say, L positive) and moreover $\alpha=1$ (if $\alpha=-1$, it is as well isochronous, with period L if L is even and $2 L$ if L is odd), and it is asymptotically isochronous (i. e., $u_{n}(\ell+L)-u_{n}(\ell)=O\left(\left.\alpha\right|^{\ell}\right)$ as $\left.\ell \rightarrow \infty\right)$ if $\lambda=L / M$ and $|\alpha|<1$.

A class of apparently quite less trivial discrete-time dynamical systems is then obtained via the standard invertible change of variables, from u_{1}, u_{2}, u_{3} to x_{1}, x_{2}, x_{3} and viceversa:

$$
\begin{aligned}
& x_{1}=u_{1}+F_{1}\left(u_{2}, u_{3}\right), x_{2}=u_{2}+F_{2}\left(x_{1}, u_{3}\right), x_{3}=u_{3}+F_{3}\left(x_{1}, x_{2}\right) \\
& u_{3}=x_{3}-F_{3}\left(x_{1}, x_{2}\right), u_{2}=x_{2}-F_{2}\left(x_{1}, u_{3}\right), u_{1}=x_{1}-F_{1}\left(u_{2}, u_{3}\right)
\end{aligned}
$$

F. Calogero, An invertible transformation and some of its applications, page 40 / 56

It involves the 3 arbitrary functions $F_{n}\left(w_{1}, w_{2}\right), n=1,2,3$, and it reads:

$$
\begin{aligned}
& \tilde{x}_{1}=x_{2}-G_{2}\left(x_{1}, x_{2}, x_{3}\right)+G_{4}\left(x_{1}, x_{2}, x_{3}\right), \\
& \tilde{x}_{2}=x_{3}-G_{1}\left(x_{1}, x_{2}, x_{3}\right)+G_{5}\left(x_{1}, x_{2}, x_{3}\right), \\
& \tilde{x}_{3}=J\left(x_{1}, x_{2}, x_{3}\right)+F_{3}\left(\tilde{x}_{1}, \tilde{x}_{2}\right),
\end{aligned}
$$

where the 5 functions G_{m} are recursively given, one in terms of the other, as follows:

$$
\begin{aligned}
& G_{1}\left(x_{1}, x_{2}, x_{3}\right)=F_{3}\left(x_{1}, x_{2}\right), \\
& G_{2}\left(x_{1}, x_{2}, x_{3}\right)=F_{2}\left(x_{1}, x_{3}-G_{1}\left(x_{1}, x_{2}, x_{3}\right)\right), \\
& G_{3}\left(x_{1}, x_{2}, x_{3}\right)=F_{1}\left(x_{2}-G_{2}\left(x_{1}, x_{2}, x_{3}\right), x_{3}-G_{1}\left(x_{1}, x_{2}, x_{3}\right)\right), \\
& G_{4}\left(x_{1}, x_{2}, x_{3}\right)=F_{1}\left(x_{3}-G_{1}\left(x_{1}, x_{2}, x_{3}\right), J\left(x_{1}, x_{2}, x_{3}\right)\right), \\
& G_{5}\left(x_{1}, x_{2}, x_{3}\right)=F_{2}\left(x_{2}-G_{2}\left(x_{1}, x_{2}, x_{3}\right)+G_{4}\left(x_{1}, x_{2}, x_{3}\right), J\left(x_{1}, x_{2}, x_{3}\right)\right),
\end{aligned}
$$

and the function J depends on G_{1}, G_{2}, G_{3} as follows:

$$
\begin{aligned}
& J\left(x_{1}, x_{2}, x_{3}\right)=\alpha\left[x_{1}-G_{3}\left(x_{1}, x_{2}, x_{3}\right)\right] \\
& +(1+2 \alpha c)\left[x_{2}-G_{2}\left(x_{1}, x_{2}, x_{3}\right)\right] \\
& +(\alpha+2 c)\left[x_{3}-G_{1}\left(x_{1}, x_{2}, x_{3}\right)\right]
\end{aligned}
$$

The general solution of this discrete-time model reads as follows:

$$
\begin{aligned}
& x_{1}(\ell)=u_{1}(\ell)+F_{1}\left(u_{1}(\ell+1), u_{1}(\ell+2)\right), \\
& x_{2}(\ell)=u_{1}(\ell+1)+F_{2}\left(x_{1}(\ell), u_{1}(\ell+2)\right), \\
& x_{3}(\ell)=u_{1}(\ell+2)+F_{3}\left(x_{1}(\ell), x_{2}(\ell)\right),
\end{aligned}
$$

With

$$
u_{1}(\ell)=A \alpha^{\ell}+B \cos \left(\frac{2 \pi \ell}{L}\right)+C \sin \left(\frac{2 \pi \ell}{L}\right)
$$

And clearly this system inherits the same phenomenology---concerning isochrony and asymptotic isochrony---of the simple linear model to which it is related via the invertible transformation, as described above.

The Figure displays the orbit and limit trajectory in the $u_{1} u_{2} u_{3}$ Cartesian space for the original system and the corresponding orbit and limit trajectory in the $x_{1} x_{2} x_{3}$ Cartesian space for the system obtained via the transformation reported above with

$$
F_{1}(p, q)=p+q-\frac{p q}{2}, F_{2}(p, q)=p-q, F_{3}(p, q)=p^{2}-q^{2}
$$

Solvable systems of autonomous nonlinear PDEs

Here we start again from a trivially solvable model, and via an invertible transformation we obtain a new model, also solvable, which looks much less trivial. For simplicity the treatment is restricted to a system of 2 first-order PDEs featuring 2 dependent and 2 independent variables.

We take as point of departure the following trivial system of 2 linear PDEs,

$$
\varphi_{1, t}=\varphi_{2, x}, \varphi_{2, t}=\varphi_{1, x}
$$

where the 2 functions $\varphi_{n} \equiv \varphi_{n}(x, t)$ depend on the 2 independent variables x and t. Here and below subscripted variables indicate partial differentiation with respect to them. Clearly this system of 2 linear PDEs has the following general solution:

$$
\begin{aligned}
& \varphi_{1}(x, t)=\Phi_{+}(x+t) \equiv \Phi_{1}(x+t)+\Phi_{2}(x-t) \\
& \varphi_{2}(x, t)=\Phi_{-}(x+t) \equiv \Phi_{1}(x+t)-\Phi_{2}(x-t)
\end{aligned}
$$

where $\Phi_{n}(z)$ are 2 arbitrary functions of the single variable z.

We now apply the following invertible transformation:

$$
\begin{aligned}
& \psi_{1}=\frac{\varphi_{1} f_{11}\left(\varphi_{2}\right)+f_{12}\left(\varphi_{2}\right)}{\varphi_{1} f_{13}\left(\varphi_{2}\right)+f_{14}\left(\varphi_{2}\right)}, \psi_{2}=\frac{\varphi_{2} f_{21}\left(\psi_{1}\right)+f_{22}\left(\psi_{1}\right)}{\varphi_{2} f_{23}\left(\psi_{1}\right)+f_{24}\left(\psi_{1}\right)} \\
& \varphi_{1}=-\frac{\psi_{1} f_{14}\left(\varphi_{2}\right)-f_{12}\left(\varphi_{2}\right)}{\psi_{1} f_{13}\left(\varphi_{2}\right)-f_{11}\left(\varphi_{2}\right)}, \varphi_{2}=-\frac{\psi_{2} f_{24}\left(\psi_{1}\right)-f_{22}\left(\psi_{1}\right)}{\psi_{2} f_{23}\left(\psi_{1}\right)-f_{21}\left(\psi_{1}\right)}
\end{aligned}
$$

These explicit transformations involve 8 a priori arbitrary functions $f_{n k}(w)$. However we now restrict attention to a very specific example (due to Matteo Sommacal), corresponding to the following assignment:

$$
\begin{aligned}
& f_{11}(w)=f_{14}(w)=\frac{c_{4}+c_{1} c_{3}+w\left(c_{3}+c_{1} c_{4}\right)}{c_{3}{ }^{2}-c_{4}{ }^{2}} \\
& f_{12}(w)=f_{13}(w)=-\frac{c_{2}\left(c_{3}+w c_{4}\right)}{c_{3}{ }^{2}-c_{4}{ }^{2}} \\
& f_{21}(w)=f_{24}(w)=c_{3} w, f_{22}(w)=f_{23}(w)=c_{4} w .
\end{aligned}
$$

Then the two functions $\psi_{n} \equiv \psi_{n}(x, t)$ satisfy the following system of two coupled nonlinear PDEs:

$$
\begin{aligned}
& \psi_{1, t}=\left[\alpha \psi_{1, x}+\left(\beta^{2}-\alpha^{2}\right) \psi_{2, x}\right] / \beta \\
& \psi_{2, t}=\left(\psi_{1, x}-\alpha \psi_{2, x}\right) / \beta
\end{aligned}
$$

where

$$
\begin{aligned}
& \alpha \equiv \alpha\left(\psi_{1}, \psi_{2}\right)=\frac{c_{2}\left(1-\psi_{1}^{2}\right)}{\left(c_{1}+c_{2}+\psi_{2}\right)\left(c_{1}-c_{2}+\psi_{2}\right)}, \\
& \beta \equiv \beta\left(\psi_{1}, \psi_{2}\right)=\frac{\left(c_{3}^{2}-c_{4}^{2}\right)\left(c_{1}+c_{2} \psi_{1}+\psi_{2}\right)}{\left(c_{1}+c_{2}+\psi_{2}\right)\left(c_{1}-c_{2}+\psi_{2}\right)\left(c_{3}-c_{4} \psi_{2}\right)^{2}} .
\end{aligned}
$$

The general solution $\psi_{1}=\psi_{1}(x, t), \psi_{2}=\psi_{2}(x, t)$ of this system of two PDEs then reads as follows:

$$
\begin{aligned}
& \psi_{1}=\frac{c_{2} c_{3}-\left(c_{1} c_{3}+c_{4}\right) \Phi_{+}+c_{2} c_{4} \Phi_{-}-\left(c_{1} c_{4}+c_{3}\right) \Phi_{+} \Phi_{-}}{-c_{1} c_{3}-c+c_{1} c_{3} \Phi_{+}-\left(c_{1} c_{4}+c_{3}\right) \Phi_{-}+c_{2} c_{4} \Phi_{+} \Phi_{-}} \\
& \psi_{2}=\frac{c_{4}+c_{3} \Phi_{-}}{c_{3}+c_{4} \Phi_{-}}
\end{aligned}
$$

where $\Phi_{ \pm}=\Phi_{ \pm}(x, t)$ are of course defined as above,

$$
\begin{aligned}
& \Phi_{+}(x+t) \equiv \Phi_{1}(x+t)+\Phi_{2}(x-t) \\
& \Phi_{-}(x+t) \equiv \Phi_{1}(x+t)-\Phi_{2}(x-t)
\end{aligned}
$$

in terms of the 2 arbitrary functions $\Phi_{n}(z)$ of the single variable z.

A solvable nonautonomous PDE

Here we show---as a representative example---how to manufacture a solvable nonautonomous PDE starting from the trivial (linear) autonomous firstorder PDE

$$
\varphi_{u}(u, w)=\varphi_{w}(u, w)
$$

the general solution of which reads of course

$$
\varphi(u, w)=F(u+w)
$$

where $F(z)$ is an arbitrary function of the single variable z. We set

$$
\varphi(u, w)=\psi(x, y)
$$

with

$$
\begin{gathered}
x=\frac{u f_{11}(w)+f_{12}(w)}{u f_{13}(w)+f_{14}(w)}, y=\frac{w f_{21}(x)+f_{22}(x)}{w f_{23}(x)+f_{24}(x)} \\
u=-\frac{x f_{14}(w)-f_{12}(w)}{x f_{13}(w)-f_{11}(w)}, w=-\frac{y f_{24}(x)-f_{22}(x)}{y f_{23}(x)-f_{21}(x)}
\end{gathered}
$$

It is then a matter of trivial if tedious algebra to ascertain that $\psi(x, y)$ satisfies the following (linear) nonautonomous PDE:

$$
g(x, y) \psi_{x}(x, y)=h(x, y) \psi_{y}(x, y)
$$

with $g(x, y)$ and $h(x, y)$ expressed explicitly (by rather complicated formulas not reported here) in terms of the 8 arbitrary functions $f_{n k}(z), n=1,2, k=1,2,3,4$.
We limit our presentation to exhibit here one specific example (due to François Leyvraz), corresponding to the assignments

$$
\begin{aligned}
& f_{11}(z)=z, f_{12}(z)=f_{13}(z)=0, f_{14}(z)=1, \\
& f_{21}(z)=f_{24}(z)=\cos (z), f_{13}(z)=-f_{22}(z)=\sin (z) .
\end{aligned}
$$

Then the linear nonautonomous PDE satisfied by $\psi(x, y)$ reads as follows:

$$
\begin{aligned}
& (y \cos x+\sin x)^{2}(\cos x-y \sin x) . \\
& \cdot\left[3\left(1+y^{2}\right)+\left(1-y^{2}\right) \cos (2 x)-2 y \sin (2 x)\right] \psi_{x}(x, y) \\
& =2\left[(\cos x-y \sin x) \cos \left(\frac{y \cos x+\sin x}{\cos x-y \sin x}\right)+(y \cos x+\sin x) \sin x\right]^{2} . \\
& \cdot\left[(1+x)(y \cos x+\sin x)^{2}-x\left(1+y^{2}\right)\right] \psi_{y}(x, y) .
\end{aligned}
$$

And its general solution reads as follows:

$$
\psi(x, y)=F\left(\frac{x \cos x-x y \sin x}{y \cos x+\sin x}+\frac{y \cos x+\sin x}{\cos x-y \sin x}\right)
$$

with $F(z)$ an arbitrary function.
On the face of it, the fact that the PDE written above is explicitly solvable should appear quite nontrivial to anybody who does not know how this finding has been arrived at; although verifying it is a relatively trivial task.

Functional equations

Here we report an, apparently nontrivial, functional equation involving 2 functions, as an example of the kind of findings obtainable via this approach. It reads as follows:

$$
\begin{aligned}
& x_{1}\left(z_{1}+z_{2}\right)=\frac{u_{1}\left(z_{1}\right) u_{1}\left(z_{2}\right) f_{11}\left(u_{1}\left(z_{1}\right)+u_{1}\left(z_{2}\right)\right)+f_{11}\left(u_{1}\left(z_{1}\right)+u_{1}\left(z_{2}\right)\right)}{u_{1}\left(z_{1}\right) u_{1}\left(z_{2}\right) f_{13}\left(u_{1}\left(z_{1}\right)+u_{1}\left(z_{2}\right)\right)+f_{14}\left(u_{1}\left(z_{1}\right)+u_{1}\left(z_{2}\right)\right)} \\
& x_{2}\left(z_{1}+z_{2}\right)=\frac{\left[u_{2}\left(z_{1}\right)+u_{2}\left(z_{2}\right)\right] f_{21}\left(x_{1}\left(z_{1}+z_{2}\right)\right)+f_{22}\left(x_{1}\left(z_{1}+z_{2}\right)\right)}{\left[u_{2}\left(z_{1}\right)+u_{2}\left(z_{2}\right)\right] f_{23}\left(x_{1}\left(z_{1}+z_{2}\right)\right)+f_{24}\left(x_{1}\left(z_{1}+z_{2}\right)\right)}
\end{aligned}
$$

where, in the 2 preceding formulas, firstly $u_{1}(z)$ should be replaced by the following expression in terms of $x_{1}(z)$ and $u_{2}(z)$,

$$
u_{1}(z)=-\frac{x_{1}(z) f_{14}\left(u_{2}(z)\right)-f_{12}\left(u_{2}(z)\right)}{x_{1}(z) f_{13}\left(u_{2}(z)\right)-f_{11}\left(u_{2}(z)\right)}
$$

and subsequently $u_{2}(z)$ should be replaced by the following expression in terms of $x_{1}(z)$ and $x_{2}(z)$,

$$
u_{2}(z)=-\frac{x_{2}(z) f_{24}\left(x_{1}(z)\right)-f_{22}\left(x_{1}(z)\right)}{x_{2}(z) f_{23}\left(x_{1}(z)\right)-f_{21}\left(x_{1}(z)\right)}
$$

so that the resulting formulas relate (explicitly, if in a convoluted manner) the values that the two functions $x_{1}(z)$ and $x_{2}(z)$ take at the value $z=z_{1}+z_{2}$ of their argument, to the values they take at z_{1} and at z_{2} (where z_{1} and z_{2} are of course independent variables taking arbitrary values).

The (explicit!) solution of this functional equation reads as follows:

$$
\begin{aligned}
& x_{1}(z)=\frac{\exp (b z) f_{11}(a z)+f_{12}(a z)}{\exp (b z) f_{13}(a z)+f_{14}(a z)} \\
& x_{2}(z)=\left[a z f_{21}\left(\frac{\exp (b z) f_{11}(a z)+f_{12}(a z)}{\exp (b z) f_{13}(a z)+f_{14}(a z)}\right)\right. \\
& \left.+f_{22}\left(\frac{\exp (b z) f_{11}(a z)+f_{12}(a z)}{\exp (b z) f_{13}(a z)+f_{14}(a z)}\right)\right] \\
& {\left[a z f_{23}\left(\frac{\exp (b z) f_{11}(a z)+f_{12}(a z)}{\exp (b z) f_{13}(a z)+f_{14}(a z)}\right)\right.} \\
& \left.+f_{24}\left(\frac{\exp (b z) f_{11}(a z)+f_{12}(a z)}{\exp (b z) f_{13}(a z)+f_{14}(a z)}\right)\right]^{-1},
\end{aligned}
$$

where a, b are two arbitrary parameters. And note that the 8 functions $f_{n k}(w), n=1,2, k=1,2,3,4$ appearing in the above functional equation and in its solution are arbitrary.

This finding clearly obtains, via the transformations

$$
\begin{aligned}
& x_{1}=\frac{u_{1} f_{11}\left(u_{2}\right)+f_{12}\left(u_{2}\right)}{u_{1} f_{13}\left(u_{2}\right)+f_{14}\left(u_{2}\right)}, x_{2}=\frac{u_{2} f_{21}\left(x_{1}\right)+f_{22}\left(x_{1}\right)}{u_{2} f_{23}\left(x_{1}\right)+f_{24}\left(x_{1}\right)} \\
& u_{1}=-\frac{x_{1} f_{14}\left(u_{2}\right)-f_{12}\left(u_{2}\right)}{x_{1} f_{13}\left(u_{2}\right)-f_{11}\left(u_{2}\right)}, u_{2}=-\frac{x_{2} f_{24}\left(x_{1}\right)-f_{22}\left(x_{1}\right)}{x_{2} f_{23}\left(x_{1}\right)-f_{21}\left(x_{1}\right)},
\end{aligned}
$$

from the two trivial functional equations

$$
u_{1}\left(z_{1}+z_{2}\right)=u_{1}\left(z_{1}\right) u_{1}\left(z_{2}\right), u_{2}\left(z_{1}+z_{2}\right)=u_{2}\left(z_{1}\right)+u_{2}\left(z_{2}\right)
$$

whose solutions of course read

$$
u_{1}(z)=\exp (b z), u_{2}(z)=a z
$$

Analytical geometry

The standard invertible transformation

$$
\begin{aligned}
& x_{1}=u_{1}+F_{1}\left(u_{2}\right), x_{2}=u_{2}+F_{2}\left(x_{1}\right)=u_{2}+F_{2}\left(u_{1}+F_{1}\left(u_{2}\right)\right), \\
& u_{1}=x_{1}-F_{1}\left(u_{2}\right)=x_{1}-F_{1}\left(x_{2}-F_{2}\left(x_{1}\right)\right), u_{2}=x_{2}-F_{2}\left(x_{1}\right)
\end{aligned}
$$

is an area preserving reparametrization of the Cartesian plane: indeed we already mentioned that---as it is indeed easy to verify---it entails that the Jacobian determinant of this change of variables---from u_{1}, u_{2} to x_{1}, x_{2} and viceversa---is unity, for any arbitrary assignment of the 2 functions $F_{1}(w), F_{2}(w)$ (this property corresponds---in the Hamiltonian context, see Section 4.3.1---to the canonical character of the corresponding change of variables).

A representative example of the findings that easily flow from this property is provided by the following Proposition.

Proposition: Let c_{1}, c_{2} be 2 arbitrary (real) numbers, and draw, in the $x_{1} x_{2}$
Cartesian plane, the following 4 curves: the curve A going from the point $a=(0,0)$ to the point $b=\left(1, c_{2}\right)$ and characterized by the equation (a piece of a parabola)

$$
A: x_{2}=c_{2} x_{1}^{2}
$$

the curve B going from the point $b=\left(1, c_{2}\right)$ to the point $c=\left(c_{1}, 1+c_{1}^{2} c_{2}\right)$ and characterized by the (quartic) equation

$$
B: 1-x_{1}-x_{2}+c_{2} x_{1}^{2}+c_{1} x_{2}^{2}-2 c_{1} c_{2} x_{1}^{2} x_{2}+c_{1} c_{2}^{2} x_{1}^{4}=0
$$

the curve C going from the point $c=\left(c_{1}, 1+c_{1}^{2} c_{2}\right)$ to the point $a=(0,0)$ and characterized by the (quartic) equation

$$
C: x_{1}-c_{1} x_{2}^{2}+2 c_{1} c_{2} x_{1}^{2} x_{2}-c_{1} c_{2}^{2} x_{1}^{4}=0
$$

and the curve D going from the point $a=(0,0)$ to the point $c=\left(\frac{1}{2}+\frac{c_{1}}{4}, \frac{1}{2}+c_{2}\left(\frac{1}{2}+\frac{c_{1}}{4}\right)^{2}\right)$ (lying on the curve B) and characterized by the (quartic) equation

$$
D: x_{1}-x_{2}+c_{2} x_{1}^{2}-c_{1} x_{2}^{2}+2 c_{1} c_{2} x_{1}^{2} x_{2}-c_{1} c_{2}^{2} x_{1}^{4}=0
$$

Then the region enclosed by the 3 curves A, B, C has area $1 / 2$, and the curve D divides this region in two parts of equal area (see Figure).

The proof of this Proposition is an immediate consequence of the fact that, via the above transformation with $F_{n}(w)=c_{n} w^{2}$ the region enclosed by the 3 curves A, B, C corresponds, in the $x_{1} x_{2}$ Cartesian plane, to the triangle of vertices $(0,0),(1,0),(0,1)$ in the $u_{1} u_{2}$ Cartesian plane, and likewise the curve D corresponds to the segment starting from the vertex $a=(0,0)$ and bisecting that triangle (see Figure).

