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Summary 

Any (autonomous) dynamical system can be extended or modified, obtaining thereby a new (autonomous) 
dynamical system involving a constant T---the value of which can be freely assigned---and featuring the following 
two properties: (i) all solutions of the new model are isochronous (completely periodic in all their degrees of 
freedom with the assigned period T); (ii) starting from generic initial data, the time evolution of the new dynamical 
system over  time intervals of order TT <<~   is essentially identical to that of the original dynamical system, up to a 
constant rescaling of time and of corrections of order TT /

~ . These findings entail that, in some sense, 
“isochronous systems are not rare” and moreover that such systems may feature an “extremely complicated “ time-
evolution. They are also valid in the context of Hamiltonian dynamics; they are in particular applicable to the most 
general many-body problem (provided it is, overall, translation-invariant), entailing remarkable observations about 
statistical mechanics, thermodynamics and the issue of the “arrow of time” for macroscopic physics. Since 
completely periodic systems are maximally superintegrable (possessing the maximal number of functionally 
independent constants of motion compatible with the time evolution not being frozen), these findings also entail that 
any (Hamiltonian) dynamics can be embedded into a superintegrable (Hamiltonian) dynamics; and again, that such 
superintegrable systems may feature an “extremely complicated “ time-evolution. 
All these findings have been  obtained together with François Leyvraz . Some of them are reported in a recent 
monograph (F. Calogero, Isochronous systems, Oxford University Press, 2008); others are more recent, see 
references listed below.  A very recent finding demonstrates how to extend an arbitrary (autonomous) dynamical 
system so that the (also autonomous) extended system is isochronous (with an arbitrarily assigned period T) yet its 
dynamics for an arbitrary fraction (of course, less than unity) of its (periodic) time evolution is exactly identical to 
that of the original system.  
These findings suggest the need to invent new definitions associated with a finite  time scale  of “chaotic” versus 
“integrable” behaviors of dynamical systems (all current definitions refer instead to the behavior over infinite time). 
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   A trick to transform a dynamical system into an isochronous 
dynamical system 

Let us start from an autonomous, but otherwise largely arbitrary, dynamical system, say 

( ) ( ) (*),,...,1,';' NnXhXXhX nn ===
 

with the appended prime indicating differentiation with respect to the variable τ   of  ( )τX .  
 We then change it so that it reads as follows: 

( ) ( ) ( ) ( ) (**),,...,1,; Nnxhtxxhtx nn === ττ &&&&

with the superimposed dot indicating differentiation with respect to the variable t of x(t) and ( ).tτ .  
  It is then plain that the general solution of this system reads 

( ) ( )[ ] ( ) ( )[ ] ,,...,1,; NntXtxtXtx nn === ττ
 

where ( )τX  is the general solution of (*). Hence if the scalar function ( )tτ   is periodic with period T, 

( ) ( ),tTt ττ =+  

the general solution of (**) inherits from  ( )tτ  the property to be isochronous with period T: 

( ) ( ).txTtx =+
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In conclusion,  whenever ( )Xh   is such that the solution of the system (*) of N nonlinear ODEs 
exists globally, all solutions of the system (**) are periodic with period T: this system is isochronous . 
    However, the system (**) is not autonomous. To eliminate this "defect", we perform the second 
step of our treatment, replacing this system (**) with the system 

( ) ( ) *)*(*,,...,1,; Nnxhxxhx nn === φφ &&

which is of course equivalent provided the time-evolution of the scalar quantity φ   is such that 

( ) ( ).tt τφ &=
 

    There are now two options to obtain a quantity φ    that qualifies for this purpose. One option---perhaps the most 

obvious---is to treat φ   as an additional dependent variable, and to extend the system (*) by attaching to it a few 

additional ODEs involving φ   and possibly other, additional dependent variables, so as to guarantee that the time 

evolution of φ   has the desired property. Specific instances of how to achieve this goal are detailed in a paper [F. 
Calogero and F. Leyvraz, “How to extend any dynamical system so that it becomes isochronous, asymptotically 
isochronous or multi-periodic”, J. Nonlinear Math. Phys. 16, 311-338 (2009)], where it is also shown how a third 
step of our treatment---consisting essentially in a change of the additional dependent variables, entangling them 
with the original variables---allows to manufacture many, quite neat, extended dynamical systems having the 
required properties of isochrony. One example obtained in this manner is displayed below. 
 Another option is to identify a collective variable ( )xφ   that, as a consequence of the very evolution entailed 

by the dynamical system (***),  has a time evolution, ( ) ( )[ ]txt φφ ≡ ,  such that, via the preceding formula, it defines a 

function ( )tτ  having the desired properties. This is the approach on which we will then focus, restricting moreover 
attention to a Hamiltonian system of major physical relevance. 
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Example: a  modified Lorenz system  
( )( ) ,1 21

2
111 xxxyx −+−= α&

 ( )( ) ,1 3121
2
112 xxxxxyx −−+= β&

 

( )( ) ,1 321
2
113 xxxxyx γ−+=&

 

( ) ,2 2
121121 yxxxyy −+Ω= α&

 

( ) .2 2121112 yyxxxyy −+Ω−= α&
 

 
For 0=Ω  one can ignore 2y  (whose evolution does not influence the other variables) 

and set ( ) 11 2
11 =+ xy : then the fourth of these 5 ODEs coincides with the first, and the 

first 3 become the 3 ODEs of the Lorenz model:  
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( ) ,' 211 XXX −−= α
 

,' 31212 XXXXX −−= β
 

.' 3213 XXXX γ−=
 

Here the appended prime indicates differentiation with respect to 
the independent variable, which for convenience we call τ , so that  

( ) ( ) ( ) ./'', ττττ ddXXXXX nnnnn ≡≡≡ . 
But in fact also the solution of our isochronous model --- with 
0>Ω  --- can be “explicitly” exhibited in terms of the solutions 
( )τnX  of the Lorenz model, with the same initial data,  

( ) ( ) :00 nn xX =  
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( ) ( )[ ] ,3,2,1, == ntXtx nn τ
( ) ( ) ( )[ ]{ }
( ) ( ) ( )[ ]{ },1/

,1/
2

1
1

2

2
11

txtty

txtty

+Ω=

+=
− τ

τ
&&

&

( ) ( ) ( )[ ]{ } ./cos1sin ΩΩ−+Ω= tBtAtτ
 

 

This solution is clearly periodic with period   

./2 Ω= πT  
And clearly, for 0<t<<T , 

( ) ( ) ./TtOtAt +=τ
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A trick to modify  a Hamiltonian into an 
isochronous  Hamiltonian    

[ ( ) ( ) ] 1,,, =Θ qpqpH
 

Isochronous Hamiltonian : 

( ) ( )[ ] ( )[ ]{ };,,
2

1
;,

~ 222 qpqpHqpH ΘΩ+=Ω
  ,   Ω

= π2
T

 

 

“Isochronous  Hamiltonian systems  
are not rare”  

 
For a proof see:  F. Calogero and F. Leyvraz, “General technique to produce 
isochronous Hamiltonians”, J. Phys. A.: Math. Theor. 40, 12931-12944 (2007). 
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A remarkable example: the many-body problem   
    We write as follows the (simplest version of the) Hamiltonian characterizing the standard nonrelativistic N-body problem: 

( ) [ ] ( ) .)()(,
2

1
,

1

2 qVaqVqVpqpH
N

n
n =++= ∑

=  

Let us now review some standard related developments, trivial as they are. 
We hereafter denote with P  the total momentum, and with  Q  the (canonically-conjugate) centre-of-mass coordinate: 

.
1

,
11

n

N

n
n

N

n

q
N

QpP ∑∑
==

==
 

Thanks to the translation invariance property 

[ ] 0, =PH  
Here and hereafter the Poisson bracket [ ]GF , of two functions ( )qpF ,  and  ( )qpG ,  of the canonical variables is defined as follows: 

[ ] ( ) ( ) ( ) ( )
.

,,,,
,

1









∂
∂

∂
∂

−
∂

∂
∂

∂
=∑

= nnnn

N

n q

qpF

p

qpG

q

qpG

p

qpF
GF

 

And let us recall that the evolution of any function  ( )qpF ,  of the canonical coordinates is determined by the equation 

[ ],,' FHF =  
where the appended prime denotes differentiation with respect to the "timelike" variable corresponding to the evolution induced by the 
Hamiltonian H. 
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    It is now convenient to introduce the "relative coordinates" nx  and the "relative momenta"  ny  via the standard 
definitions 

.,
N

P
pyQqx nnnn −=−=

 

Note that these are not canonically conjugated quantities, since [ ] Nxy nmmn /1, −= δ , and they are not independent 
since obviously their sum vanishes: 

.0,0
11

== ∑∑
==

n

N

n
n

N

n

xy
 

    It is moreover convenient to introduce the “relative-motion” Hamiltonian ( )xyh ,  via the formula 
 

( ) ( ) ( ) ( )qVpp
N

xVyxyh mn

N

mn
n

N

n

+−=+= ∑∑
==

2

1,

2

1 4

1

2

1
,

 

so that 

( ) ( ) .,
2

,
2

xyh
N

P
qpH +=

 

Note that this definition of the relative-motion Hamiltonian ( )xyh ,  entails that it Poisson commutes with both P and 
Q : 

[ ] [ ] .0,,0, == hQhP  
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    For completeness and future reference let us also display the equations of motion implied by the original Hamiltonian ( )qpH , : 

( ) ( ) ,/'',/',' nnnnnn qqVqqqVppq ∂−∂=∂−∂==
 

where (for reasons that will be clear below) we denote as τ  the independent variable corresponding to this Hamiltonian flow and 
with appended primes the differentiations with respect to this variable: 

( ) ( ) ( ) ( ) ./',/',, ττττττ ∂∂≡∂∂≡≡≡ nnnnnnnn ppqqppqq  
Hence 

0',' == P
N

P
Q

 

yielding 

( ) ( ) ( ) ( ) ( ),0,
0

0 PP
N

P
QQ =+= τττ

 

 
as well as 

( ) ( ) ( )
.

,
',

,
'

nn
n

n
nn x

xyh

x

xV
y

y

xyh
yx

∂
∂

−=
∂

∂−=
∂

∂
==

 

Note that these equations have the standard Hamiltonian form even though, as mentioned above, nx  and ny  are not canonically 
conjugated variables.  

This ends the review of quite standard results for the classical nonrelativistic many-body problem. Let us also emphasize that, above and 
below, the restriction to unit-mass particles, and to one-dimensional space, is merely for simplicity: generalizations – also of the following results – 
to the more general case with different masses and arbitrary space dimensions is quite elementary, essentially trivial. 
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The isochronous Hamiltonian  
    The Ω-modified isochronous Hamiltonian ( )Ω;,

~
qpH  is now defined by the formula 

( ) ( )
,

,

2

1
;,

~ 22

2













Ω+







+=Ω Q

b

xyh
PqpH

 

where b is an arbitrary constant (introduced for dimensional reasons: it has the 
dimensions of a momentum, hence of the square-root of an energy) and Ω is a 
positive constant. Let us emphasize that hereafter the evolution of the various 
quantities is that caused by this new Ω -modified Hamiltonian; the corresponding 
independent variable is hereafter denoted as t (and interpreted as "time"), and 
differentiations with respect to this variable will be denoted, as usual, by 
superimposed dots, and of course, for any function ( )qpFF ,≡  of the canonical 
variable its time evolution will be determined by the standard equation 

[ ].,
~

FHF =&
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Solution of the isochronous Hamiltonian ( )Ω;,
~

qpH    
( ) ( ) ( ) ( ) ( ) ( )[ ]

,
sinsin

0cos0 0

Ω
−Ω=

Ω
Ω+Ω= tt

bC
t

QtQtQ &
 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )[ ],1cos
,0,0sin

0cos0 −Ω+
Ω
Ω+Ω= t

b

xyht
PtPtP &

 

( ) ( ) ( ) ( ),~,~ ττ nnnn ytyxtx ==  

where (changing for convenience notation) we now denote as nn yx ~,~  the canonical 
variables whose time evolution is determined by the Ω -modified Hamiltonian ( )Ω;,

~
qpH  and 

as nn yx ,  the canonical variables whose time evolution is determined by the original, un-
modified Hamiltonian ( )qpH , . And here (most importantly) 

( ) ( ) ( )[ ]{ } ,/cos1sin ΩΩ−+Ω=≡ tBtAtττ
 

where the constants A and B are given by simple explicit formulas in terms of the initial 
position and velocity of the centre-of-mass of the system and of the Hamiltonian ( )Ω;,

~
qpH  

(which is of course a constant of motion). The crucial observation is that ( )tτ  (hence the 
entire solution) is a periodic function of t with period 

./2 Ω= πT
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Behavio r of the isochronous  system over time scales 
much shorter than T 

     The solution formulas displayed above demonstrate that the dynamics 
yielded by the Hamiltonian ( )Ω;,

~
qpH  does not differ --- on a time scale short with 

respect to the period T --- from that yielded by the original Hamiltonian ( )qpH ,   
(up to a constant rescaling of time). Indeed  clearly ( )tττ =  on a sufficiently short 
time scale varies linearly in t, since in the neighbourhood of any time t  --- 
except when ( ) ( )tCt Ω= cosτ&  vanishes --- 

( ) ( )

( ) ( )[ ] ./cossin

,cos
2

ΩΩΩ−Ω=


















 −+Ω+=

tttCC

T

tt
OtCtCtτ
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Transient chaos 

One therefore finds that – essentially throughout the time evolution -- the Ω-modified 
dynamics differs from the unmodified one solely by a time rescaling -- by a possibly 
negative coefficient -- and by a time shift. The coefficient and the shift are time-
independent over a time scale much smaller than the isochrony period T=2π/Ω, but vary 
periodically with period T. A peculiar state of affairs arises, however, whenever dtd /τ  
changes its sign: this of course happens twice within every time period T, this being in 
fact a consequence of the periodicity of ( )tτ , which itself is the cause of the isochrony.  
    It is interesting to speculate on the application of this Ω-modification technique to any 
(translation-invariant) Hamiltonian describing a “realistic” translation-invariant many-body 
problem featuring, in its centre-of-mass system, “chaotic” motions with a natural time 
scale CT . Then --- provided the constant Ω is assigned so that the isochrony period 

Ω= /2πT  is very much larger than this time scale, CTT >>  --- the Ω-modified problem shall 
exhibit some kind of chaotic behavior for quite some time before the isochronous 
character of all its motions takes over, causing thereafter a recurrent evolution. This 
phenomenology --- qualitative rather than quantitative as described here, since a precise 
definition of chaos requires generally that a system displaying it be observed for infinite 
time --- is nevertheless remarkable. 
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 The quantum case 
    Finally we tersely show that, in a quantal context, our Ω -modified Hamiltonian 

( ) ( )[ ]{ } ,2//,;,
~ 222 QbxyhPqpH Ω++=Ω  

 features an (infinitely degenerate) equispaced spectrum with spacing Ωh . 

     This spectrum consists of the eigenvalues kE  of the stationary Schrödinger equation 

( ) ( ) ( ) ( ) ,;;;;
2
1 22

2

λψλλψλλ
λλ zZEzZZ

bZ
i kkk Ψ=Ψ













Ω+




 +
∂
∂− h

 

obtained from this Hamiltonian via the standard quantization rule 

,,/;,/ zqzipZQZiP ⇒∂∂−⇒⇒∂∂−⇒ hh  

and by identifying λ as an eigenvalue of the quantized version of the relative-motion Hamiltonian ( )xyh , . Indeed this Schrödinger equation is obtained by 

assuming that the eigenfunctions of the quantized version of the Hamiltonian ( )Ω;,
~

qpH  factor into the product of an eigenfunction, ( )λ;ZkΨ , depending on the 

variable Z and on which acts the differential operator ∂/∂Z , and of the eigenfunction ( )λψ λ ;z ,corresponding to the eigenvalue λ of the quantized version of the 

relative-motion Hamiltonian ( )xyh , . The justification for this factorization is in the commutativity of the operators representing the quantal versions of the 

canonical variables P and Q , see above, with the operator representing the quantal version of the relative-motion Hamiltonian ( )xyh ,  -- a commutativity 

reflecting the Poisson-commutativity of the corresponding quantities in the classical context. 
    It is now plain that the above Schrödinger equation features the spectrum and eigenfunctions 

( ) ,,...2,1,0,2/1 =+Ω= kkEk h  

( ) ( ) ,,
2

exp;
2

hh

Ω=







−

Ω
= ZzzH

z

b

zi
Z kk

λλψ
 

where ( )zH k denotes the standard Hermite polynomial of order k. This spectrum is of course equispaced with spacing Ωh , and it is infinitely degenerate 

inasmuch as it does not feature any dependence on the eigenvalues λ. 
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How to extend an arbitrary  dynamical system so that the 
dynamics of the extended system is isochronous  with 
period T , and moreover, over a fraction  ( ) Tε−1 of that 

period (with  ε  arbitrary in the open interval  10 << ε ), it is 
exactly identical  to that of the original model  

 

   

( ) ( ) (*),,...,1,';' NnXhXXhX nn ===
 

( ) ( ) ( ) ( ) (**),,...,1,; Nnxhtxxhtx nn === ττ &&&&

 

( ) ( )[ ] ( ) ( )[ ] ,,...,1,; NntXtxtXtx nn === ττ
 

where ( )τX  is the general solution of (*). Hence  ( ) ( )tTt ττ =+ implies ( ) ( ).txTtx =+  

In conclusion,  whenever ( )Xh   is such that the solution of the system (*) of N nonlinear ODEs 
exists globally, all solutions of the system (**) are periodic with period T: this system is isochronous . 
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    However, the system (**) is not autonomous. To eliminate this "defect", we perform the second 
step of our treatment, replacing this system (**) with the system 

( ) ( ) *)*(*,,...,1,; Nnxhxxhx nn === φφ &&

which is of course equivalent provided the time-evolution of the scalar quantity φ   is such that 

( ) ( ) ( ) ( ) .'',
0

tdtttt
t

φττφ ∫== &
 

 To construct a function ( ) ( )tt τφ &= having the desired properties one may proceed as follows. 

( ) ( ) ( ) ( ) ;/2;, 1221 Ω=Ω−=Ω= πTtftftftf &&
 

( ) ( ) ( )[ ] ( )[ ]{ },;,exp;,1;, 2
212121

−−−= εεθεεφ ffSffSKff
 

( ) ( ) ,00,01 <=>= xifxxifx θθ
 

( ) ,10,
2

sin
2

sinexp
1

1

1

0

2

22 <<









































−






−=

−−

∫ εεπεπ
ε

ε xdxK
 

( ) .
2

sin;, 2
2

2
2

1

2
1

21 






+
+

−= επε
ff

f
ffS
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Solution: 
 

( ) ( )[ ] ( ) ( )[ ] ,,...,1,; NntXtxtXtx nn === ττ
 

( ) ( ) ( ) ( ) ,cos,sin 21 ηπηπ −Ω=−Ω= tAtftAtf
 

( ) ( ) ;/2;;10 2,12,1 Ω==±<≤ πη TtfTtf
 

( ) ( )[ ] ( ) ( ) ( ) ,2/sinsin;, 22
21 επηπε +−Ω−== ttStftfS

 

( ) ( ) ( ) ( ) ;2/2/,0,2/ TTTStSTtS εη±===± ±±  

( ) ( )[ ] ( ) ( ) ( ) ( )[ ]{ } ,'exp',1 2

0

−−=ΨΨ−= ∫ tSdtKtttSt
t

εθφ &

 

( ) ( ) ( ) ( ) ( ) .2/;0,2/
2/

0
tTttdttTt

T
ττφφφ =±==± ∫
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If ,2/εη ≥  hence ,2/0 TTT <<≤ +−  then 

( ) ,0 −<≤= Ttforttτ  

( ) ( ) ( ) ,+−− <≤Ψ+Ψ−= TtTforTtttτ
( ) ;2/2/ TtTforTtt <≤−= +τ  

if instead ,2/εη ≤  hence ,2/0 TTT <<≤ +−  then 

( ) ( ) ,0 +<≤+Ψ−= TtforAtttτ
( ) ,2/TTtTforBAtt +<≤−+= −+τ

( ) ( ) ;2/2/. TtTTforCBAttt <≤++−+Ψ−= −τ
( ) ( ) ( ) .2/,,0 TTCTBA +Ψ=Ψ=Ψ= −−+  

 
Note that in both cases ( )tτ , besides being periodic  with 

period T/2, is linear  in t over a fraction  ε−1 of its period T/2.
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Outlook  
 

We have seen that, given an arbitrary (autonomous) dynamical system ---  possibly 
characterized by a chaotic dynamics (according to the standard definitions of chaotic 
behavior) --- it is possible to extend it so as to obtain thereby a new (autonomous) 
dynamical system which is isochronous (all its solutions are completely periodic with an a 
priori fixed period) hence it is integrable (indeed, “more than superintegrable”: according 
to the standard definition of  superintegrable systems, as possessing the maximal 
number of functionally independent constants of motion, so that all their confined 
solutions are completely periodic, but not necessarily isochronous); yet it is also such 
that, over an arbitrarily large fraction (of course, less than unity) of its period it reproduces 
exactly the dynamics of the original model. This fact suggests the need to invent new 
definitions of chaotic behavior (or perhaps, using a new name, of “complex” behavior) 
which do not refer to the behavior of a system over infinite time (as the current definition 
of chaotic behavior does), but rather equip this new definition with an associate time 
scale characterizing its validity. Note that, to some extent, this is now being done in the 
integrable case via the introduction of multiple scale analysis and the recognition that a 
nonintegrable system may nevertheless be more or less nonintegrable depending on the 
order of a multiple scale reduction of it that yields an integrable dynamics (indeed all 
dynamical systems are integrable over a sufficiently short time scale).  


