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A Bose–Einstein condensate

First let me remind some simple properties of Bose particles. The
number of Bose noninteracting particles is:

N =
∑
k

[
exp(

εk − µ
T

)− 1

]−1
, (1)

where εk = ~2k2/2m is energy, and µ is chemical potential. To
calculate the transition temperature T0, we replace in Eq.(1) the
sum with the integral over all momentum states p = ~k ,
k = [2mε]1/2 /~, z = ε/T , that allows to rewrite N as

N

V
= C

∫ ∞
0

z1/2dz/
[
exp(z − µ

T
)− 1

]
(2)

where C = C (T ), V is volume. From Eq.(2) µ can be interpreted
as the implicit function of T and N/V as µ = µ(T ,N/V ) ≤ 0.
For µ = 0 the integral Eq.(2) defines the critical temperature
T = T0 and the particle number corresponding to the negligible
chemical potential conditions µ = 0.
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A Bose–Einstein condensate

Simple Einstein’s argument (see e.g. L.Landau, E.Lifshitc,
Statistical physics, V.5) shows that for T ≤ T0 the number of
noninteracting particles N can be rewritten as N = Nε>0 + Nε=0,
where Nε>0 = (T/T0)3/2 N is the particle number with ε > 0,

while Nε=0 =
[
1− (T/T0)3/2

]
N is the number of particles in the

ground state energy ε = 0. Thus, if T → 0 than Nε=0 → N, so all
the Bose particles transit to the ground state with ε = 0
(Bose-Einstein condensate - BEC).

This is a simple conclusion of the ideal noninteracting particles
model. This state of matter was first predicted by Satyendra Nath
Bose and Albert Einstein in 1924 -25.

What happens in a real situation with the interacting particles?
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A Bose–Einstein condensate

A Bose–Einstein condensate (BEC) is a state of matter of a dilute
gas of weakly interacting bosons confined in an external potential
and cooled to temperatures very near absolute zero (0 K or -273.15
◦C). Under such conditions, a large fraction of the bosons occupy
the lowest quantum state of the external potential, at which point
quantum effects become apparent on a macroscopic scale.

The first gaseous condensate was produced by Eric Cornell and
Carl Wieman in 1995 at the University of Colorado at Boulder
NIST-JILA lab, using a gas of rubidium atoms cooled to 170
nanokelvin (nK) (1.7× 10−7 K). For their achievements Cornell,
Wieman, and Wolfgang Ketterle at MIT received the 2001 Nobel
Prize in Physics.

4 / 64



Introduction Gross-Pitaevskii equation (GPE) Numerical results Repulsive interaction Conclusion Refs

A Bose–Einstein condensate. Quantum theory.

The state of the BEC can be described by the wavefunction of the
condensate ψ(r), so |ψ(r)|2 is interpreted as the particle density, so
the total number of atoms is N =

∫
dr |ψ(r)|2 = ‖ψ‖2. Provided

essentially all atoms are in the condensate (that is, have condensed
to the ground state), and treating the bosons using mean field
theory, the energy E associated with the state ψ(r) is:

E =

∫
dr

[
~2

2m
|5ψ(r)|2 + V (r) |ψ(r)|2 +

1

2
G |ψ(r)|4

]
(3)

Minimising this energy with respect to variations δψ(r), and
holding the number of atoms constant, yields the Gross-Pitaevskii
equation (GPE) (also a non-linear Schrödinger equation):

i~
∂ψ(r)

∂t
=

(
−~252

2m
+ V (r) + G |ψ(r)|2

)
ψ(r) (4)

that normally applied for theoretical analysis.
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A Bose–Einstein condensate. Quantum theory.

A challenging subject in the study of dynamical patterns in
Bose-Einstein condensates (BECs) is the investigation of
matter-wave solitons in multidimensional settings. Various routes
leading to the creation of stable 2D and 3D solitons have been
elaborated theoretically. The proposed approaches have much in
common with their counterparts developed for the stabilization of
2D and 3D spatiotemporal solitons in nonlinear optics, see review
[2].
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A Bose–Einstein condensate. Quantum theory.

Nonlinear Schrödinger equation (NSE)

i
∂Φ

∂τ
= [−O2

⊥ + V (r)+G |Φ|2]Φ, (5)

where G is a real function (the nonlinear coefficient), so that if
G > 0 the nonlinearity is repulsive, whereas for G < 0 the
nonlinearity is attractive.

It is well known that for G < 0, and if N = ‖u0‖2 is above a
threshold value Nc , the solutions of this equation can self-focus
and become singular in a finite time. This phenomenon is called
wave collapse or blowup of the wave amplitude.
When G < 0, there exists only one solution of NSE which is real,
positive and radially symmetric and for which ‖u0‖2 has the
minimum value and this solution decays exponentially at infinity.
This solution is called the ground state or Townes soliton.
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A Bose–Einstein condensate. Quantum theory.
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Figure: 1. Self-compressing of initial Gaussian package at attractive
interaction G = −1 and the period of π-phase shift Tt = 8. (a) τ = 15;
(b) 20; (c) 25; (d) 30.
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A Bose–Einstein condensate. Quantum theory.

From the theory of nonlinear Schrödinger equations it is known
that the Townes soliton has exactly the critical power for blowup
Nc = ‖u0‖2 ' 5.85 (for G = −1), therefore, it separates in some
sense the region of collapsing and expanding solutions. Moreover,
the Townes soliton is unstable, i.e. small perturbations of this
solution lead to either expansion of the initial data or blowup in
finite time.

In nonlinear optics a spatial modulation of the nonlinear coefficient
of the optical material is used to prevent such a collapse so that
the optical beam becomes collapsing and expanding in alternating
regions and is stabilized in average. The same idea now has been
used in the field of matter waves to obtain a stable BEC soliton.
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A Bose–Einstein condensate. Quantum theory.

Typical optical lattices
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Figure: 2. (a) Init Gaussian package. (b),(c),(d) two-dimensional
distribution of the trapping potential V (x , y , 0) induced by optical
lattices (OL) for Penrose tiling (a pattern of tiles, which completely cover
an infinite plane in an aperiodic manner) for cases (b) N = 4; (c) N = 5;
(d) N = 7. 10 / 64
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The variational approximation (VA)

2D Gross-Pitaevskii equation (GPE)

Thus, it is very important to construct soliton families and identify
their stability boundaries in the 2D attractive model with the full
2D lattice subject to the time-periodic modulation. In the
normalized form, the respective two-dimensional GPE for
mean-field wave function Ψ (x , y , t) is

i
∂Ψ

∂t
= −1

2
∆2Ψ−|Ψ|2 Ψ−V0

[
1 +

ε

2
cos(ωt)

]
[cos (2x) + cos (2y)] Ψ,

(6)
where t is time, (x , y) are coordinates in the 2D plane (scaled so
as to fix the OL period equal to π), and V0 is the strength of the
lattice, while ε and ω are the amplitude and frequency of its
temporal modulation. Coefficient −1 in front of the nonlinear term
in Eq. (6) implies that the nonlinearity is attractive [G. Burlak, B.
A. Malomed, ”Dynamics of matter-wave solitons in a
time-modulated two-dimensional optical lattice”, Physical Review
A. 77, 053606 (2008)]. 11 / 64
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The variational approximation (VA)

For a typical case of atoms of 7Li loaded in the optical lattice (OL)
with the period on the order of µm, a characteristic value of the
scaled frequency, ω ∼ 2, corresponds, in physical units, to the
modulation rate on the order of several KHz.
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The variational approximation (VA)

Lagrangian

Variational methods have been quite useful in many problems of
nonlinear optics and BEC [38, 39, 4, 5, 18, 24]. To apply the VA
to the present model, we notice that Eq. (6) can be derived from
Lagrangian L =

∫ +∞
−∞ Ldx , with density

L =
i

2
(Ψ∗Ψt −ΨΨ∗t )− 1

2

(
|Ψx |2 + |Ψy |2

)
+

1

2
|Ψ|4

+ V0

[
1 +

ε

2
cos(ωt)

]
[cos (2x) + cos (2y)] |Ψ|2 , (7)

where the asterisk stands for the complex conjugation. Following
Refs. [4] and [5], we adopt the isotropic ansatz for the soliton,

Ψans (x , y , t) = A(t) exp

(
iφ(t) +

i

2
b(t)r2 − r2

2W 2(t)

)
, (8)

where r2 ≡ x2 + y2, and all variables A(t), φ(t), b(t), and W (t)
(amplitude, phase, radial chirp, and width, respectively) are real.
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The variational approximation (VA)

Effective Lagrangian

The substitution of the ansatz (8) in Eq. (7) and calculation of the
integrals yield the effective Lagrangian,

Leff = −N
dφ

dt
− N

2W 2
+

N2

4πW 2
+ 2V0

[
1 +

ε

2
cos(ωt)

]
Ne−W

2

− 1

2

db

dt
NW 2 − 1

2
b2NW 2, (9)

where N ≡ πA2W 2. The first Euler-Lagrange equation following
from effective Lagrangian (9), δ

(∫
Leffdt

)
/δφ = 0 (δ/δφ stands

for the variational derivative of the action functional), is
tantamount to the conservation of the norm of the wave function,
which is the single dynamical invariant of Eq. (6). Indeed, the
norm of ansatz (8) is∫ ∫

|Ψans(x , y)|2 dxdy = πA2W 2 ≡ N. (10)
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The variational approximation (VA)

The second Euler-Lagrange equation

The second Euler-Lagrange equation, δ
(∫

Leffdt
)
/δb = 0, reduces

to the well-known expression for the chirp in terms of the time
derivative of the width [38, 39], b = W−1 (dW /dt). Using this
relation, the next variational equation, which accounts to
∂Leff/∂

(
W 2
)

= 0 [since Lagrangian (9) does not contain dW /dt]
can be cast in the following final form,

d2W

dt2
=

1− N/Ñmax

W 3
−4V0

[
1 +

ε

2
cos(ωt)

]
W exp

(
−W 2

)
, (11)

where Ñmax ≡ 2π is the well-known VA prediction [38] for the
critical (maximum) norm in the 2D space, which separates
collapsing solutions at N > Ñmax, i.e. with W (t)→ 0, A(t)→∞
at t → tclps [for V0 = 0 and initial conditions W (t = 0) = W0 and
dW /dt(t = 0) = 0, the collapse time predicted by Eq. (11) is

tclps = W 2
0

(
N/Ñmax − 1

)−1/2
], and noncollapsing at N < Ñmax.
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The variational approximation (VA)

The actual maximum value of N, found numerically from Eq. (6)
with V0 = 0 (it gives the norm of the Townes soliton [40]), is

Nmax = 5.85 ≈ 0.93Ñmax, (12)

which characterizes the accuracy of the VA. For the condensate of
7Li atoms, a typical collapse threshold corresponds to the number
of atoms . 104.
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The variational approximation (VA)

Equation (11) helps one to understand what may happen to the
2D soliton under the action of the weak “management”, with
ε/2� 1. First, for ε = 0, Eq. (11) predicts a stable equilibrium
position, which is given by a smaller root of equation

W 4
0 exp

(
−W 2

0

)
=

1− N/Ñmax

4V0
(13)

(the larger root gives an unstable solution). Then, the linearization
of Eq. (11) (still with ε = 0) yields the eigenfrequency of small
oscillations around W = W0,

ω0 =

√
2
(

1− N/Ñmax

) (
2−W 2

0

)
W 2

0

. (14)
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The variational approximation (VA)

For instance, in the example considered below (Fig. 8), with
1− N/Ñmax = 0.155 and V0 = 0.25, the relevant root of Eq. (13)
is W0 ≈ 0.71, and Eq. (14) yields ω0 ≈ 1.35. Keeping quadratic
and cubic terms in the expansion of Eq. (11) in powers of
w(t) ≡W (t)/W0 − 1 around W leads to a standard equation of
driven nonlinear oscillations.

18 / 64



Introduction Gross-Pitaevskii equation (GPE) Numerical results Repulsive interaction Conclusion Refs

The variational approximation (VA)

In particular, in the near-critical situation, i.e., for
1− N/Ñmax � 1, this equation takes the form of

d2w

dt2
+16V0w−24V0w2+40V0w3 = −2εV0 cos(ωt)−2εV0 cos (ωt) w .

(15)
It predicts the lowest-order direct resonance when ω is close to
ω0,the parametric resonance at ω close to 2ω0, and higher-order
resonances at ω = nω0, with n = 2, 3, 4, .. [41]. The resonances
may help to stabilize the 2D soliton against the collapse, as,
increasing the amplitude of its intrinsic oscillations, the soliton
spends less time in the “dangerous zone” with small width, that
might be a starting point for the collapse. On the other hand,
effectively stretching the soliton, the resonances may destabilize it
against decay into radiation, at smaller values of N.
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The variational approximation (VA)

Both trends are observed in numerical simulations, as shown
below. Comparison of predictions following from a numerical
solution of full variational equation (11) and direct simulations of
Eq. (6) is presented in the next section.
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The simulation mode

Method

Systematic simulations of Eq. (6) were performed by means of the
split-step method [43], in the (x , y) domain of size 256× 256 or
512× 512. The simulations were run with the Gaussian initial
configuration,

Ψ(x , y , 0) = A0 exp
(
−q
[
(x − x0)2 + (y − y0)2

])
, q > 0, (16)

whose norm is N = πA2
0/q [cf. ansatz (8)]. Taking N < Nmax, as

well as N slightly exceeding Nmax [recall Nmax, the critical value of
the norm for the onset of the free-space collapse, is given by Eq.
(12)], it was quite easy to find stable solitons which keep their
shape despite the temporal modulations imposed by the
“management”, see generic examples in Figs. 3 and 4. The former
figure presents comparison of the initial and final shapes of the
soliton, while the latter one displays the evolution of the soliton’s
amplitude in the course of its self-adjustment to the stable shape.
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The simulation mode

Comparison of the initial and final shapes of the soliton:

Figure: 3. A typical example of a stable 2D soliton, as obtained from the
numerical solution of Eq.(6) with V0 = 0.65, ε = 0.5, ω = 1.35, and
initial configuration (16) with A0 = 1.39, q = 0.5, whose norm,
N = 6.07, exceeds the collapse threshold in the static model,
Nmax ≈ 5.85. The panels display the density distribution, |Ψ(x , y , t)|2, at
t = 0 (a) and t = 150 (b).
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The simulation mode

Evolution of the soliton’s amplitude:

Figure: 4. (a) The evolution of the amplitude of the stable soliton,
|A| ≡ |Ψ (x = x0, y = y0)|, for the same parameters as in Fig. 3, except
for V0 = 0.5 (|A| has the same meaning in other figures). Curve f (t)
shows the modulation function in Eq.(6), 1 + (ε/2) sin (ωt); (b) The
shape of the soliton at t = 150.
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The simulation mode

The soliton shapes displayed in Figs. 3 and 4 are confined,
essentially, to a single cell of the OL (similar to results reported in
previous works [4, 6, 8]). Roughly the same shapes would be
observed in a parabolic trapping potential; however, the difference
is that, if the nonlinearity is too weak, the OL cellular potential
cannot suppress the tunnel decay of the localized pulses [37],
therefore the decay is observed at smaller values of N, as shown
below.

24 / 64



Introduction Gross-Pitaevskii equation (GPE) Numerical results Repulsive interaction Conclusion Refs

The simulation mode

As said above, in the 2D equation with V0 = 0 localized
configurations with N > Nmax = 5.85 suffer collapse, while those
with N < Nmax decay. The static OL stabilizes 2D solitons in the
latter case, but it cannot arrest the collapse of initial localized
states with N > Nmax [4, 5, 6]. The numerical analysis of the
model with the quasi-1D lattice potential subjected to the periodic
time modulation did not reveal stable solitons with N > Nmax

either [33]. As shown in the following Fig. 5, in the present model
the periodic time modulation of the two-dimensional OL potential
makes it possible to stabilize the solitons both at N < Nmax and in
some interval above Nmax. The actual increase of critical norm is
not large, but the very fact that the constraint N ≤ Nmax can be
broken is an interesting result, as it has never been reported before,
to the best of our knowledge.
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The simulation mode
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Figure: 5. The evolution of the soliton’s amplitude, as obtained from the
numerical solution of Eq. (6) for ε = 0.5 and ω = 1 and different values
of norm N of initial configuration (16) (higher curves correspond to
larger N). (a) The model without the optical lattice, V0 = 0. In this
case, all configurations with N < Nmax ≈ 5.85 decay, while the ones with
N > Nmax suffer the collapse. (b) In the presence of the time-modulated
optical lattice with V0 = 0.5, the 2D solitons may be stable, including
some values of N above Nmax. In particular, the soliton is stable at
N = 6.01 ≈ 1.03Nmax, while it collapses for N = 6.09, at t = 1.49. If N
is too small, N < Nmin, the soliton gradually decays into radiation. In
panel (b), the curve for N = 3.14, which is slightly smaller than the
corresponding value of Nmin, also shows the slow decay of the soliton. 26 / 64
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Comparison with the variational approximation

Comparison of the predictions of the VA with numerical results in
two typical cases (for stable and decaying solitons, corresponding
to N = 5.4 and N = 4.6, respectively). The discrepancy in the
dependence of the soliton’s amplitude on time, observed in the
former case, is a known feature [42, 39, 18], explained by the fact
that the oscillations predicted by the VA are damped by the
radiation loss, which is not taken into regard by the VA Eq.(8).
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Figure: 7. Comparison of the evolution of the soliton’s amplitude, as
predicted by the variational approximation (“VA”) and found from direct
simulations of the partial differential equation (6) (“PDE”), for N = 5.4
(a stable soliton) and N = 4.6 (a decaying state). 27 / 64
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Comparison with the variational approximation
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Figure: 7. Comparison of the evolution of the soliton’s amplitude, as
predicted by the variational approximation (“VA”) and found from direct
simulations of the partial differential equation (6) (“PDE”), for N = 5.4
(a stable soliton) and N = 4.6 (a decaying state).
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Comparison with the variational approximation

The VA predicts eigenfrequency ω0 of intrinsic oscillations of the
weakly perturbed 2D soliton trapped in the static OL, see Eq. (14).
Because this feature may be important to understand the response
of the soliton to the periodic time modulation of the lattice, in
terms of possible resonances (see below), it is necessary to check
whether the presence of the eigenfrequency is confirmed by
simulations of full equation (6) with the static lattice, i.e., ε = 0.
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Comparison with the variational approximation

Random perturbations

In the Fig. 8 we display the power spectrum of small oscillations
around the soliton caused by the addition of a small random
perturbation to it, for V0 = 0.25 and N = 5.31, which corresponds
to 1− N/Ñmax ≈ 0.155. As mentioned above, in this case Eqs.
(13) and (14) predict the eigenfrequency to be ω0 ≈ 1.35.
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Figure: 8. The power spectrum of small random perturbations around
the stable soliton trapped in the static lattice (ε = 0), for V0 = 0.25 and
N = 5.31.
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Comparison with the variational approximation

Random perturbations

The spectrum in Fig. 8 clearly shows the main peak quite close to
this point. Peaks corresponding to higher-order resonances (see
above) can also be recognized in the figure. To produce the
spectrum shown in Fig.8, we simulated the evolution of the soliton
up to a very long time, t = 1200, eliminating a contribution from a
relatively short initial stage, which featured a transient behavior.
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Figure: 8. The power spectrum of small random perturbations around
the stable soliton trapped in the static lattice (ε = 0), for V0 = 0.25 and
N = 5.31.
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Stability

Stability

Results produced by the systematic numerical analysis of the
stability of the 2D soliton under the action of the “lattice
management” are collected in the following Fig. 10(a), which
displays the stability region in the plane of the modulation
parameters, ω and ε, for fixed V0 = 0.25 and N = 5.905. Note that
this norm again (like in the cases of Figs. 3 and 4) slightly exceeds
the collapse threshold in the static model, which is given by Eq.
(12). The stability region in the plane of ε and N, for the same OL
strength, V0 = 0.25, as in Fig. 10, and ω = 4, is displayed in Fig.
10(b). The latter plot explicitly demonstrates the growth of the
collapse threshold, Nmax, with the increase of the modulation
amplitude. Note that not the entire parameter region below the
stability border in Fig. 10(b) corresponds to stable solitons; if N is
too small, the solitons are unstable against decay, see below.
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Stability

Stability diagrams
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Figure: 10. (a) The stability region in the plane of the modulation
parameters, ω and ε, for V0 = 0.25 and N = 5.905. The area relevant to
the model with the periodically modulated optical lattice corresponds to
ε ≤ 2, where the time-dependent amplitude in Eq. (6),
1 + (ε/2) cos(ωt), does not change its sign. (b) The collapse threshold
versus the modulation amplitude, ε, for V0 = 0.25 and ω = 4.
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Stability

In Fig. 10(a), the horizontal line denotes the maximum possible
value of the modulation amplitude in the model of the
time-modulated OL, εmax = 2. A noteworthy fact is that the
stability region can extend up to this limit, i.e., 100% modulation
depth (recall that, in the case when the stabilization of 2D solitons
was provided by the quasi-1D lattice, the stability limit
corresponded to shallow modulation [33]). The results for ε > 2
are included too in Fig. 10(a), as they may find a different physical
realization, corresponding to a superposition of moving OLs [34].
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Stability

A feature obvious in Fig. 10(a) is a resonant-like dependence of
the stability border on ω. This may be a manifestation of the
fundamental resonance at ω close to ω0 and higher-order
resonances at multiple values of ω. As argued above, the resonance
may help to arrest the collapse, by forcing the vibrating soliton to
spend less time in the state where it is “dangerously” narrow.
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Stability

Since the value of the norm corresponding to Fig. 10(a) is close to
Nmax, one may expect that the corresponding
fundamental-resonance frequency should be close to one given by
Eq. (15), i.e., ω0 = 2, for V0 = 0.25 [the same is given by Eqs.
(13) and (14) in the limit of N/Ñmax → 0]. Indeed, the picture in
Fig. 10(a) is consistent with the expectation of the fundamental
and higher-order resonances at ω = nω0, n = 1, 2, 3, 4 (the picture
also suggests the existence of a very strong resonance close to
ω = 5ω0, but that one falls deeply into the unphysical region,
ε > 2).
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Stability

As mentioned above, the soliton whose norm is too small cannot
stabilize itself and decays into quasi-linear waves. Therefore, along
with the upper stability boundary, N = Nmax, that guarantees the
absence of the collapse, it is necessary to identify the lower one,
N = Nmin, which secures the stability of the soliton against the
decay. Both boundaries, as predicted by the VA and found from
the direct simulations, are displayed in Fig. 15, in the form of
dependences Nmax(V0) and Nmin(V0), at fixed ε = 0.5 for several
different values of ω. In each panel, the stability region is
Nmin < N < Nmax.
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Stability

Stability boundaries
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Figure: 15. The dependence of the stability boundaries, Nmax and Nmin,
on the OL strength, V0, at ε = 0.5 and different values of the modulation
frequency, ω.
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Stability

Stability boundaries
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Figure: 15. The dependence of the stability boundaries, Nmax and Nmin,
on the OL strength, V0, at ε = 0.5 and different values of the modulation
frequency, ω. Solid and dashed lines show, severally, Nmax and Nmin as
found from the simulations, while the dotted and dashed-dotted lines
represent, respectively, Nmax and Nmin as predicted by the variational
approximation (VA). The arrows in (c) and (d) indicate values Nmax for
the stationary case, ε = 0.
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Stability

We observe in Fig. 15 that dependences Nmin(V0) produced by the
VA are in reasonable agreement with the results of direct
simulations of the GPE for modulation frequencies ω ≥ 2.
However, there is a conspicuous discrepancy between the VA and
GPE for ω close to 1. On the other hand, this range features
strong resonances in the perturbation spectrum, see Fig. 8.
Therefore, it is interesting to explore the Nmin(V0) dependence in
region 0.5 < ω < 2, where the resonances may lead to decay of the
soliton.
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Stability

These results are displayed in the Fig. 18, which shows that plots
Nmin(V0) essentially differ, in this region, from their counterparts
both in the static model (see the curve for ε = 0 in Fig. 18) and in
the high-frequency region, ω ≥ 2: actually, Nmin increases due to
the resonant decay of the solitons. The fact that the resonances are
narrow enough, as seen in Fig. 8, may explain a non-monotonous
character of dependences Nmin(V0) for ω = 1.10 and 1.25.
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Stability
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Figure: 18. Dependencies Nmin(V0) for ε = 0.5 and different modulation
frequencies ω in the resonant area, 0.5 < ω < 2. The curve pertaining to
ε = 0 (the static model) is included for comparison.
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Stability

Dependencies of Nmax and Nmin on the modulation frequency are
displayed in Fig. 20, for the same modulation amplitude as above,
ε = 0.5, and several different values of V0. It is quite natural that
dependencies Nmin(ω), as predicted by the VA and generated by
direct simulations of Eq. (6), are close to each other for smaller
values of the OL strength, V0 = 0.1 and 0.25, while at V0 = 0.5
the discrepancy between them is considerable. Non-monotonous
behavior of Nmin(ω) in resonant zone 0.5 < ω < 2, which correlates
to peculiarities of dependencies Nmin(V0) in the same zone.
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Figure: 20. The dependence of the upper (a) and lower (b) stability
boundaries, Nmax and Nmin, on modulation frequency ω for ε = 0.5 and
different values of OL strength V0, which are specified in the box. Labels
“v” and “g” pertain, severally, to the curves predicted by the variational
approximation and those found from direct simulations of
Gross-Pitaevskii equation (6) (the VA predicts flat value Ñmax = 2π, see
text). The arrows identify those curves which may seem indisnguishable
in the black-and-white rendition of the figure.
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Optical periodic and quasiperiodic lattice. Repulsive interaction.

Optical periodic and quasiperiodic lattice.

i
∂Φ

∂τ
= [−O2

2 + V (r)+G |Φ|2]Φ, (17)

We consider a quasiperiodic Penrose tiling trapping potential V of
the following form,

V = V (x , y , τ) = Vc + ε

N∑
n=1

cos(k(n)r + πθ(τ)) = (18)

Vc + ε(1− 2θ(τ))
N∑

n=1

cos(k(n)r), (19)

where k(n) = {cos(2π(n − 1)/N, sin(2π(n − 1)/N}, Vc = const,
and the time-dependence appears through the pulse function
θ(τ) = 1 for (2n + 1)Tt < τ ≤ (2n + 2)Tt and θ(τ) = 0
otherwise, Tt is a time period, n = 0, 1, 2....
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Optical periodic and quasiperiodic lattice. Repulsive interaction.
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Figure: (a) Init Gaussian package. (b),(c),(d) two-dimensional
distribution of the trapping potential V (x , y , 0) induced by optical
lattices (OL) for Penrose tiling (a pattern of tiles, which completely cover
an infinite plane in an aperiodic manner) for cases (b) N = 4; (c) N = 5;
(d) N = 7.
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Optical periodic and quasiperiodic lattice. Repulsive interaction.

Repulsive interaction case, N=4
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Figure: 22. Evolution of BEC soliton for period π-phase shift Tt = 50
and different times: (a) τ = 40; (b) τ = 80; (c) τ = 120; (d) τ = 160.
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Optical periodic and quasiperiodic lattice. Repulsive interaction.

Repulsive interaction case, N=5
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Figure: 23. The same as in Fig.22, except N = 5 in trapping potential
V (x , y , τ). [G. Burlak, A. Klimov. The solitons redistribution in
Bose-Einstein condensate in quasiperiodic optical lattice. Physics Letters
A. 369/5-6, 510-517 (2007).]
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Optical periodic and quasiperiodic lattice. Repulsive interaction.

Repulsive interaction case, N=7
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Figure: The same as in Fig.22, except N = 7 in trapping potential
V (x , y , τ).
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Conclusion 1.

We have studied the dynamics of 2D solitons in the model of BEC
trapped in the square-shaped OL (optical lattice) whose strength it
subject to the periodic time modulation. Being quite feasible for
the experimental implementation, the model belongs to a broad
class of schemes of the periodic management of solitons [24].

By means of the VA (variational approximation) and direct
systematic simulations of the underlying Gross-Pitaevskii equation,
we have identified stability regions for the solitons in the parameter
space of the model, including both maximum and minimum values
of the norm, as summarized in Figs. 10, 15, 18 and 20.
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Conclusion 2.

A remarkable feature demonstrated by these results is that the
stability limit may reach the maximum (100%) modulation depth.
It is noteworthy too that an increase of the collapse threshold in
predicted in comparison with its classical value in the static
situation, which corresponds to the norm of the Townes soliton.

The stability borders predicted by the VA are found to be in
reasonable agreement with the numerical results. In the plane of
the modulation frequency and amplitude, the stability boundary
features a salient resonant structure, which may also be
qualitatively explained by means of the VA.
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Conclusion 3.

The analysis reported in this Report can be extended in several
directions. It may be interesting to study interactions between the
solitons in this setting, and identify stability limits for vortex
solitons, as well as for 2D gap solitons in the model combining the
repulsive nonlinearity and lattice management.

Another extension may be made in the direction of an anisotropic
lattice management, i.e., applying time modulations shifted by π
to the two 1D sublattices.
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75, 011604(R) (2007).

K. Staliunas, R. Herrero, and G. J. de Valcárcel, Phys. Rev. E
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Notification: the most recent BEC -2010 (super-photons)!!!

Authors: Jan Klaers, Julian Schmitt, Frank Vewinger, Martin
Weitz, Institut für Angewandte Physik, Bonn, Germany
Title: Bose-Einstein condensation of photons in an optical
microcavity;
Journal: Nature 468, 545-548 (25 November 2010);

Upon increasing the photon density, we observe the following BEC
signatures: the photon energies have a Bose Einstein distribution
with a massively populated ground-state mode on top of a broad
thermal wing; the phase transition occurs at the expected photon
density and exhibits the predicted dependence on cavity geometry;
and the ground-state mode emerges even for a spatially displaced
pump spot.
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Thank you for attention!

Figure: Velocity-distribution data of a gas of rubidium atoms, confirming
the discovery of a new phase of matter, the BoseEinstein condensate
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