UMBRAL MAPS AND UMBRAL ORTHOGONAL POLYNOMIALS

J E López-Sendino, J Negro and M A del Olmo

The umbral calculus is an old mathematical tool that began its first steps in the XVII century [1]. Since the second half of XIX [2, 3] it was systematically applied although it is in the second half of XX $[4,5]$ when a formal theory was established.

Recently it has been used to provide discrete representations of canonical commutation relations, like $\left[x, \partial_{x}\right]=1,[7]-[12]$. This approach can be used to map equations and their solutions from a (continuous) framework to another (discrete) one. This umbral map preserves the point symmetries of the equations but, in general, new symmetries may appear originating a different behavior in some cases [13]-[14].

An umbral version of the orthogonal polynomials is presented. The umbral counterpart of the classical relations, that determine the polyniomials, is obtained [6].

Referencias

[1] Mullin R and Rota G C 1970 On the foundations of combinatorial theory III. Theory of binomial enumeration (Graph theory and its applications) Ed. B. Harris (Academic Press) p 167-213
[2] Blissard J 1862 Quart. J. Pure Appl. Math. 5 58, 184
[3] Bell E T 1938 Amer. Math. Monthly 45414
[4] Rota G C 1975 Finite Operator Calculus (San Diego: Academic)
[5] Roman S M 1975 The Umbral Calculus (San Diego: Academic)
[6] Nikiforov AF, Suslov SK and Uvarov VB 1991 Classical Orthogonal Polynomials of a Discrete Variable (Springer-Verlang)
[7] Levi D, Vinet L and Winternitz P 1997 J. Phys. A: Math. Gen. 30633
[8] Levi D, Tempesta P and Winternitz P 2004 J. Math. Phys. 454077
[9] Levi D, Negro J and del Olmo M A 2001 J. Phys. A: Math. Gen. 342023
[10] Levi D, Negro J and del Olmo M A 2001 Czech. J. Phys. 51341
[11] Salgado E 2004 Discrete Quantum Mechanics, Univ. de Valladolid
[12] Levi D and Winternitz P 2005 J. Phys. A: Math. Gen. 39 R1-R63
[13] López-Sendino JE, Negro J, del Olmo MA and Salgado E 2008 J. Phys. Conf. Ser. 12812056
[14] López-Sendino JE, Negro J and del Olmo MA 2010 Phys. Atomic Nuclei 73 No. 2384

