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Effective medium theory of transport in disordered systems, whose basis is the replacement of spatial disorder
by temporal memory, is extended in several practical directions. Restricting attention to a 1-dimensional system
with bond disorder for specificity, a transformation procedure is developed to deduce, from given distribution
functions characterizing the system disorder, explicit expressions for the memory functions. It is shown how
to use the memory functions in the Lapace domain forms in which they first appear, and in the time domain
forms which are obtained via numerical inversion algorithms, to address time evolution of the system beyond
the asymptotic domain of large times normally treated. An analytic but approximate procedure is provided
to obtain the memories, in addition to the inversion algorithm. Good agreement of effective medium theory
predictions with numerically computed exact results is found for all time ranges for the distributions used except
near the percolation limit as expected. The use of ensemble averages is studied for normal as well as correlation
observables. The effect of size on effective medium theory is explored and it is shown that, even in the asymptotic
limit, finite size corrections develop to the well known harmonic mean prescription for finding the effective rate.
A percolation threshold is shown to arise even in 1-d for finite (but not infinite) systems at a concentration
of broken bonds related to the system size. Spatially long range transfer rates are shown to emerge naturally
as a consequence of the replacement of spatial disorder by temporal memories, in spite of the fact that the
original rates possess nearest neighbor character. Pausing time distributions in continuous time random walks
corresponding to the effective medium memories are calculated.

PACS numbers: 5.60Cd, 61.43.-j,72.80.Ng

I. MOTIVATION FOR THE STUDY

Description of the movement of excitations and quasiparti-
cles is crucial to the study of a variety of disciplines in physics
and allied sciences [1]. Conductivity in metals and semi-
conductors, energy transport in molecular aggregates, atomic
motion in ceramic materials, molecular hopping in cell mem-
branes, all present a diverse variety of contexts in which such
description is indispensable. At a sufficiently macroscopic
level, the description is often provided by a Master equation
of the type

dPm(t)
dt

=
∑

n

FmnPn(t) − FnmPm(t) (1)

which governs the evolution of the probabilities Pm(t) of oc-
cupation of site m by the moving entity at time t via the tran-
sition rates Fmn. Here m is typically a vector index in the
appropriately dimensioned space. The method of solution
of such an equation relies on the diagonalization of the so-
called A-matrix defined through Amn = −Fmn for m , n and
Amm =

∑
n Fnm. One can always formally write the solution of

the probability vector P(t) from its initial value P(0) as

P(t) = e−AtP(0). (2)

If the system is ordered (quasiparticle moving on a crystal lat-
tice), this solution becomes practical because the diagonal-
ization can be performed via discrete Fourier transforms and
the kth mode of the probabilities Pk(t) =

∑
m Pm(t)eikm can be

written as

Pk(t) = e−Ak tPk(0). (3)

Inversion into explicit Pm(t)’s is straightforward, and the
specifics of the dynamics of the A-matrix are evident through
the eigenvalues Ak of the latter. An alternative way of an-
alyzing the transport is via random walks. The relationship
between a random walk description and a Master equation de-
scription was given long ago by Bedeaux et al. [3].

Physical systems in which disorder cannot be neglected are
rampant in nature. Whether the lack of order arises because
some transfer bonds are weaker or stronger than others, or
whether the quasiparticles must surmount barriers at some lo-
cations but not at others, disorder must be seriously taken into
account in the description of these systems. A natural way is
to replace the given system by a corresponding ordered prob-
lem with temporal memory. What this means is that the orig-
inal time-local disordered problem, given by Eq. (1), is re-
placed by the so-called generalized master equation (GME),

dPm(t)
dt

=

∫ t

0
ds

∑
n

Wmn(t− s)Pn(s)−Wnm(t− s)Pm(s), (4)

where the memory functions Wmn are of the form Wm−n,
i.e., translationally invariant, the replacement equation being,
therefore, soluble via discrete Fourier transforms. Then, in
the Laplace domain (ε is the Laplace variable and tildes de-
note Laplace transforms), the counterpart of Eq. (3) is

P̃k(ε) =
Pk(0)

ε + Ãk(ε)
, (5)

where Amn = −Wmn for m , n, Amm =
∑

nWnm, and Ak is
the Fourier transform of Am−n. Generalized master equations
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were introduced in the sixties to understand the derivation of
the irreversible Master equation from reversible quantum me-
chanics and a comparative review of methods has been given
by Zwanzig [4]. Needless to say, depending on one’s choice,
one could employ, for the description of transport in disor-
dered systems, continuous time random walk (CTRW) for-
malisms [5] instead of GME formalisms [6] in equations such
as (4). The two ways of description, CTRW’s and GME’s have
long been shown [7] to be entirely equivalent to each other in
fully arbitrary (rather than space-time decoupled) forms since
1974. The space-time decoupled case appeared in Kenkre et
al [6] and the demonstration of the equivalence for the general
(arbitrarily coupled) form was given in Kenkre and Knox [7]
(see, for instance, their Eqs. (43)). It appears that the gen-
eralization in ref. [7] was missed by several different authors
who reported it independently but subsequently [8, 9], even
six years later [10]. Some of this was commented on in brief
in ref. [11] (see Eqs. (27-31) of the latter reference).

Two questions are important to answer in the context of this
program of the description of a disordered system. To what
extent is the replacement of the spatial disorder by temporal
memories possible and meaningful even in principle? And
what is the prescription to calculate the memories and effec-
tive transfer rates given appropriate information about the dis-
order in the particular system? Without the first, it is senseless
to begin. Without the second, the study is useless.

The first question can be answered quite trivially on a little
reflection. Consider Eq. (1) solved. By assigning the so-
lutions for the probabilities, Pm(t), to an appropriate ordered
lattice, carry out the direct Fourier transform to obtain Pk(t).
Put the Laplace transform of the latter into

Ãk =
Pk(0)
P̃k(ε)

− ε (6)

and Fourier and Laplace invert to get the (translationally in-
variant) memories Amn, equivalently Wmn appearing in the
GME (4). The presence of initial conditions in the above
prescription means that each possible set of initial conditions
would have a corresponding set of memory functions, a situ-
ation which is obviously unacceptable for practical purposes.
However, in order to turn Eq. (6) into a practical prescrip-
tion for computing memories which is independent of initial
conditions, all that is necessary is to carry out an ensemble
average over the possible realizations of disorder, compati-
ble with what is known (for instance a distribution function)
about the disorder. Such an average makes the system transla-
tionally invariant after the average. Then the first term in the
right hand side of Eq. (6) which is the reciprocal of the Fourier
and Laplace transform of the (ensemble averaged) propagator,
is independent of initial conditions. The propagators directly
lead to the memories.

This is precisely the method devised long ago by Kenkre
[12, 13] to obtain exact expressions for memory functions an-
alytically for a quantum mechanical (not disordered) system,
although no ensemble average was involved in that context.
Because equations (1) and (4) as well as the operation of av-
eraging over configurations are linear, it quite unnecessary to
make any assumptions or offer demonstrations to be able to

state with certainty that the replacement program is possible.
Analyzing the problem from the viewpoint of the application
of projection techniques [14] to the problem, it also becomes
clear from Zwanzig’s formal theory that a memory will auto-
matically appear in a closed description of any quantity that is
formally projected from another whose evolution equation is
time-local. Here the projection is represented by an ensemble-
average over disordered realizations. This too requires no cal-
culation, only a moment’s reflection. The initial condition
problem, rarely discussed in the disorder context, also makes
its appearance in the projection formalism [14, 15]. It appears
as a separate term. In the original context [14] it is removed
through the initial random phase or diagonality assumption.
In our present disorder context it disappears on carrying out
the ensemble average we have mentioned above.

What is really necessary in the sense of calculations comes
to the second question we have posed above, i.e., the find-
ing of an explicit and practical prescription that would allow
one to go from information about the disorder in the real sys-
tem to the memories (or pausing time distribution functions)
in the replacement problem. Very few instances of such a
prescription exist in the literature, a noteworthy attempt be-
ing in the early work of Scher and Lax [16] that gave sup-
port to the well known theory of Scher and Montroll [17]:
on a phenomenological basis, the latter addressed with great
success unexplained puzzles of transport in xerographic ma-
terials. Known information about transfer rates between ran-
domly located sites is converted via an approximation scheme
in the appendices of ref. [16], into the continuous time random
walk pausing time description. That is the kind of prescription
that one needs in developing a usable theory.

The present paper focuses on a different manner of con-
verting disorder information into temporal memories that has
to do with the venerable subject of effective medium theories
(EMT) [18–22, 26–30]. We provide the essential background
on EMT in section 2, along with a prescription we provide
in a particularly convenient form that transforms the disorder
into explicit memory functions via a double Laplace trans-
form procedure. Our prescription facilitates the extraction of
the new results we present in subsequent sections. The spirit
of the investigations we present is most akin to, among early
attempts that have discussed memory functions in the EMT
context [10, 23], the work of Haus and Kehr [24, 25].

II. EXPLICIT DISORDER-TO-MEMORY TRANSFORM

Effective medium theories are unabashedly approximate,
i.e., do not claim to provide an exact solution of the problem.
They sacrifice exactness for practicability, i.e., prefer useful-
ness to avoidance of approximations. One of the first instances
of their application is by Bruggeman [19] but many later and
independent reports may also be found [20]. The basic idea,
explained in many textbooks and reviews [18], is to assume
that the memory represents an effective ordered medium in a
mean field sense with a magnitude (of the memory) which is
such that any departures, introduced in keeping with whatever
information is known about the disorder, average out to zero,
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thus establishing the ordered system as representing a varia-
tionally optimum limit.

To understand this concretely, we consider from now on in
this paper a 1-dimensional case of Eq. (1) with bond disorder,

dPm(t)
dt

= Fm+1[Pm+1(t) − Pm(t)] + Fm[Pm−1(t) − Pm(t)], (7)

the disorder being expressed via a distribution ρ( f ). What
this means is that any transition rate Fm can have any pos-
itive value f with probability density ρ( f ) normalized such
that

∫ ∞
0 ρ( f )d f = 1. No correlations exist in the actualization

of rates at different locations. The replacement of the disor-
dered time-local system by an ordered system with memory
then proceeds by writing in place of Eq. (7), a GME

dPm(t)
dt

=

∫ t

0
dsF (t − s)[Pm+1(s) + Pm−1(s) − 2Pm(s)], (8)

which is translationally invariant and describes elemental
transfer interactions that are nearest neighbor as in the orig-
inal (disordered) problem.

When applied to the present system, the general effective
medium concept requires the following procedure. One eval-
uates the probability propagators for two different systems:
the ordered system obeying Eq. (8), and a system obeying
Eq. (8) augmented by terms that represent a single disor-
dered bond. Transport across that bond occurs not through the
memory F (t) but through a rate f drawn from the distribution
ρ( f ). One averages the latter propagators over the distribu-
tion, i.e., carries out an integration of the result with weight
ρ( f ), and demands that the average equal the corresponding
ordered propagators. Details may be found in the references
given and lead straightforwardly to∫ ∞

0
d f

ρ( f )
1 + 2[ f − F̃ (ε)][ψ̃0(ε) − ψ̃1(ε)]

= 1. (9)

The above equation is an implicit equation for the memory
F that can be obtained in principle from the given probability
distribution function ρ( f ), the quantities ψ0 and ψ1 being the
propagators of the ordered system: the probability of remain-
ing on the site initially occupied is ψ0 whereas the probability
of occupation of the adjacent site is ψ1. Equation (9) is the
same as Eq. (22) of ref. [18], or Eq. (5.4) of ref. [21], or Eq.
(7) of ref. [23], or Eq. (3.17) of ref. [26] or Eq. (38) of ref.
[22]. Through a simple manipulation we rewrite it first as∫ ∞

0
d f

ρ( f )

f + F̃ (ε)
[
εψ̃0(ε)

1−εψ̃0(ε)

] =
1
F̃ (ε)

[
1 − εψ̃0(ε)

]
(10)

and then, by introducing a quantity ξ, in the remarkably sim-
ple and convenient form∫ ∞

0
d f

ρ( f )
f + ξ

=
1
F̃ + ξ

. (11)

The quantity ξ(ε, F̃ ) is a function of both ε and of F̃ (ε)
since the selfpropagator ψ̃0 depends explicitly on F̃ (ε) as well
as on ε. Generally,

ξ = F̃ (ε)
[

εψ̃0(ε)
1 − εψ̃0(ε)

]
. (12)

For the infinite 1-d chain with nearest neighbor rates, given
that, in this case, εψ̃0 equals [1 + 4F̃ (ε)/ε]−1/2, one has the
specific expression

ξ =
ε

4

1 +

√
1 +

4F̃ (ε)
ε

 . (13)

As we will see below, this restatement (11) of the basic
EMT equation (9) allows us to obtain a number of our re-
sults in a straightforward fashion. With very few exceptions
in the literature, the result (9) is used in the long-time limit
and therefore involves the Markoffian replacement of F (t) by
δ(t)[

∫ ∞
0 F (s)ds]. This is equivalent to the ε → 0 limit. By an

Abelian theorem εψ̃0 becomes identical to the t → ∞ limit of
the selfpropagator which is zero if the system considered is an
infinite chain. Equation (11) then reduces to the well known
effective medium theory result [29] that the effective transfer
rate Fe f f =

∫ ∞
0 F (s)ds = F̃ (ε → 0) equals the harmonic

mean of the disordered f ’s:

1
Fe f f

=
1
F̃ (0)

=

∫ ∞

0
d f

ρ( f )
f
. (14)

By contrast, our interest in the present paper is to extract
new information from the memory equation without taking
the Markoffian limit, and to go beyond common uses of effec-
tive medium theory. We will derive some general features of
the EMT memory in section 3, describe our extensions of the
theory for times that are not asymptotic in section 4, analyze
the emergence of spatially long range memories in section 5,
study finite size effects in section 6, and present conclusions
in section 7.

The first of the results of our present investigation is the re-
formulation implicit in Eq. (11) interpreted as a transform of
the distribution function ρ( f ) (disorder information) into the
effective medium quantity F (t) (temporal memory). Specifi-
cally, we can regard Eq. (11) as related to a double Laplace
transform. One applies the direct Laplace transform twice:
first to ρ( f ), with a dummy variable y as the Laplace variable,
to obtain g(y), and then to g(y) with ξ as the Laplace variable
to obtain h(ξ):

g(y) =

∫ ∞

0
ρ( f )e−y f d f ; h(ξ) =

∫ ∞

0
g(y)e−ξydy.

The prescription for extracting the memory F (t) in the
EMT equation (8) from the disorder distribution ρ( f ) consists,
thus, of computing the double transform h(ξ) of the disorder
distribution, equivalently performing the integral on the left
side of (11), and inverting into the time domain the memory
transform F̃ (ε) after solving for it from the implicit equation

h(ξ) =
1

F̃ (ε) + ξ(ε, F̃ )
. (15)

One has, thus, a practical prescription to obtain the t depen-
dence of the memory F (t) from the disorder ρ( f ).

The usefulness of the form of the basic equation we have
presented, Eq. (11), should be already clear by comparison
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to the well-known asymptotic result for the effective rate Eq.
(14) and noticing from Eq. (12) or Eq. (13) that in the asymp-
totic limit ξ vanishes. Further uses are reported in the rest of
the paper.

III. NATURE OF THE EFFECTIVE MEDIUM MEMORY
FUNCTIONS

We have applied the prescription of Eq. (11) to various
distribution functions ρ( f ) to obtain F̃ (ε) and discovered that
the results share a number of common features. These features
become apparent on inverting the transform to obtain F (t), the
memory function in the time domain, and can be understood
as we show below. The numerical inversion scheme we use is
[32–34]

Fg(t,M) =
ln 2

t

2M∑
k=1

ζkF̃

(
k

ln 2
t

)
,

ζk = (−1)M+k
min(k,M)∑

j=b(k+1)/2c

jM+1

M!

(
M
j

)(
2 j
j

)(
j

k − j

)
. (16)

where Fg(t,M) is the approximation to the Laplace inverse of
F̃ (ε). The precision required to sum the series, i.e. the num-
ber of significant digits, is 2.2M while the precision of the
resulting expression is 0.90M. So, if one uses double preci-
sion in the calculations, the value of M should not be larger
than 7. For a detailed discussion on the numerical inversion
of Laplace transforms, see ref. [34]. Note that the function is
only evaluated at the real and positive values of the Laplace
variable ε.

The result of the Laplace inversion is always that the EMT
memory F (t) consists of two pieces, a δ-function at the ori-
gin of time (t = 0) and a part that is negative but finite. A
schematic depiction is given in Fig. 1. In order to understand
this and other qualitative, and some quantitative, aspects of
F (t) from general arguments, consider the actual system evo-
lution equation (7) on the one hand, and the representative
EMT equation (8) on the other, both for an initial occupation
of only the site m. Let us first evaluate the first time derivative
of Pm(t) at the initial time. The respective results are[

dPm(t)
dt

]
t=0

= −(Fm + Fm+1) (17)

for the actual Master equation, and[
dPm(t)

dt

]
t=0

=

∫ 0+

0−
dsF (t − s)[Pm+1(s) + Pm−1(s) − 2Pm(s)]

(18)
for the representative EMT equation. A configuration average
over the distribution ρ( f ) converts the right hand side of Eq.
(17) into −2〈 f 〉 = −2

∫
d fρ( f ) f . It is impossible for Eq. (18)

to yield a non-zero result (because of the limits of integration)
unless F (t) contains a δ-function at the origin. As Eqs. (17)
and (18) must yield results that equal each other, we deduce
that the form of the EMT memory function is

F (t) = 〈 f 〉δ(t) − Q(t). (19)

0

time

F(
t)

Q(0)

FIG. 1: Shape of the effective medium memory function F (t) show-
ing the delta function of strength 〈 f 〉 at the origin and the negative
piece Q(t). The time integral from 0 to ∞ of the memory F (t) is
1/〈1/ f 〉.

The origin of the δ-function at t = 0 is clear from the above
analysis. That the additional part must have a time integral for
all time which is negative follows from the general result (14)
that the integral over all time of F (t) is the harmonic mean
1/〈1/ f 〉 =

∫
d fρ( f )/ f which is always smaller [35] than the

arithmetic mean 〈 f 〉.
We also note that the integral of Q(t) over all time is now

determined: ∫ ∞

0
Q(t)dt = 〈 f 〉 −

1
〈1/ f 〉

. (20)

Additional information can be obtained in this exact manner
about the memory function, for instance, the initial value of
Q(t). Differentiation of Eq. (7) with respect to time yields the
initial second time derivative[

d2Pm(t)
dt2

]
t=0

= 2
(
F2

m+1 + F2
m + Fm+1Fm

)
. (21)

Similarly, differentiation of the EMT generalized master equa-
tion (8) yields, after a configuration average,[

d2Pm(t)
dt2

]
t=0

= 6〈 f 〉2 + 2Q(0). (22)

Carrying out the configuration average of the former result,
which gives 4〈 f 2〉 + 2〈 f 〉2, and equating the two values of the
second time derivatives at the initial time, we can evaluate
Q(0) exactly for any distribution function as

Q(0) = 2
[
〈 f 2〉 − 〈 f 〉2

]
= 2

(∫ d fρ( f ) f 2
)
−

(∫
d fρ( f ) f

)2 . (23)

It is also straightforward to continue in this manner with fur-
ther differentiations to obtain exact initial values of higher
derivatives of Q(t). For instance, in terms of the A-matrix
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appearing in Eq. (2), we can evaluate the initial value of the
rth derivative of Pm via[

drPm

dtr

]
0

= (−1)r(Ar)mm

and proceed as shown above with configuration averages.
For our nearest neighbor rate system we have Amn =

−Fm+1δm,n+1 − Fmδm,n−1 + (Fm+1 + Fm)δm,n.
We do not carry out this program here but use the limited

information gathered above to develop a simple analytical ap-
proximation to the memory cast in the form of a difference
of a term proportional to a delta function and another to an
exponential. This ‘exponential’ approximation to the EMT
memory for any given distribution of the rates is

Fa(t) = 〈 f 〉δ(t) − 2
[
〈 f 2〉 − 〈 f 〉2

]
e
−t

(
2(〈 f 2〉−〈 f 〉2)
〈 f 〉−(〈1/ f 〉)−1

)
. (24)

The subscript a clarifies that the memory is approximate.
While the precise shape of the actual memory function will
not be captured by our approximation (24), examples to be
given in the next section will make clear that the approximate
memory can be remarkably good.

The general behavior of the time dependence of the mem-
ory function consisting of a decay (infinitely fast for our sys-
tem) to negative values and then a rise which is often rela-
tively slower is typical in many systems. It is usually encoun-
tered in studies of the velocity autocorrelation 〈v(t)v〉which is,
needless to say, very closely related (in our case simply pro-
portional) to the memory function. The small time behavior
represents initial transfer at a higher rate; the subsequent be-
havior is affected by disorder or imperfections in the system
as they are encountered in the motion. Indeed, the velocity
autocorrelation for a random walker completely confined to a
finite space exhibits this very behavior, the overall integral of
〈v(t)v〉 for all time being precisely zero because of the con-
finement: the mean square displacement saturates in this case
(see, e.g., ref. [36] for a nuclear magnetic resonance context.)

IV. BEYOND ASYMPTOTIC DESCRIPTION

Research reported on the basis of effective medium the-
ory is almost entirely focused on an asymptotic description
of quantities such as the diffusion constant. There have been
a few exceptions as in the work with focus on the ac con-
ductivity, e.g., by Odagaki and Lax [26], and others [18], the
publications of Haus and Kehr [23–25], the anisotropic disor-
dered systems studied by Parris [27], and the granular material
stress work of Kenkre [30]. One of the questions we address in
the present paper is how well effective medium theory works
for times outside of the long and short time asymptotic do-
mains, i.e., for all times. To address this problem we now
compute the memories explicitly for three different disorder
distribution functions ρ( f ), use those memories in the GME to
calculate observables and compare the results to numerically
obtained exact solutions of the disordered Master equation.

A. Some Specific Distributions ρ( f )

A natural distribution to consider is the multi-delta distri-
bution

ρ( f ) =

M∑
i=1

αiδ( f − fi)

wherein the nearest-neighbor transition rates may take one of
M values fi each with a weight αi, with

∑M
i=1 αi = 1. We will

focus particularly on the case M = 2, so that

ρ( f ) = αδ( f − f1) + (1 − α)δ( f − f2). (25)

The arithmetic and harmonic means of the rates, additionally
the mean of the square of the rates, are given by

〈 f 〉 = α f1 + (1 − α) f2,
1
〈1/ f 〉

=
f1 f2

α f2 + (1 − α) f1
,

〈 f 2〉 = α f 2
1 + (1 − α) f 2

2 . (26)

The distribution ρ( f ) for this case is shown as the two arrows
in Fig. 2.

The second particular distribution we consider is the
gamma distribution (related closely to the Poisson distribu-
tion):

ρ( f ) =
γn+1

Γ(n + 1)
f ne−γ f . (27)

The arithmetic and harmonic means of the rates, and the mean
of the square are

〈 f 〉 =
n + 1
γ

, (28)

1
〈1/ f 〉

=
n
γ
, (29)

〈 f 2〉 =
(n + 1)(n + 2)

γ2 . (30)

A plot of ρ( f ) itself is displayed for the particular case of n =

1 and γ = 4 in Fig. 2.
The third case we consider is the triangular distribution

given by

ρ( f ) =


( f − f0 + fb)/ f 2

b f0 − fb ≤ f ≤ f0,
(− f + f0 + fb)/ f 2

b f0 ≤ f ≤ f0 + fb,
0 elsewhere.

(31)

The minimum possible rate is f0 − fb and the maximum pos-
sible rate is f0 + fb. The distribution rises linearly from the
minimum value with slope 1/ f 2

b until it attains the value 1/ fb
at f = f0 and then descends with the same magnitude of the
slope down to the maximum value. The meaning of f0 is that
it is the value of f at the apex (and hence the mean of the dis-
tribution), and fb is half the length of the base of the triangle.
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)

 

 

gamma

triangular

FIG. 2: Examples of probability distributions ρ( f ). The two arrows
represent the double-delta distribution with equal weight α = 1−α =

0.5. A gamma distribution with n = 1 and γ = 4 and a triangular
distribution with f0 = 0.3 and b = 0.2 are depicted by the solid
and dashed lines respectively. Units of f in the plot are arbitrary
and the same as those of f0 and b for the triangular distribution, and
reciprocal to those of γ for the gamma distribution.

The distribution is shown in Fig. 2 for f0 = 0.3 and fb = 0.2.
It leads to

〈 f 〉 = f0, (32)

〈 f 2〉 = f 2
0 +

f 2
b

6
, (33)

1
〈1/ f 〉

=
fb

ln
(
1 +

2 fb
f0− fb

)
+

f0
fb

ln
(
1 − f 2

b

f 2
0

) . (34)

B. Evaluation of Memory Functions for Specific Cases of ρ( f )

The approximation to the memory given by the formula
(24) is easily evaluated for the three distributions by substi-
tuting in the formula the respective values of 〈 f 〉, 〈 f 2〉 and
1/〈1/ f 〉. As one example, note that for the gamma distribu-
tion it is given by

Fa(t) =

(
n + 1
γ

)
δ(t) − 2

(
n + 1
γ2

)
e−

2(n+1)t
γ . (35)

The memory function F̃ (t), whether derived from (11)
or the simpler (24), can be used immediately to calculate
other, more directly observable, quantities. A useful quan-
tity is the (dimensionless) mean square displacement 〈m2〉 =∑

m m2Pm(t) for initial localization at the origin. It is simply
twice the double time integral of the memory:

〈m2〉 =
∑

m

m2Pm(t) = 2
∫ t

0
ds

∫ s

0
F (y)dy.

The time-dependent diffusion coefficient D(t), a quantity often
used in transport theory to describe the instantaneous state of

motion, may be defined as one half the product of the square
of the intersite distance a and the time derivative of the mean
square displacement. It is proportional to a single time integral
of the memory function:

D(t) =
a2

2

(
d〈m2〉

dt

)
= a2

∫ s

0
F (s)ds.

These have exact expressions in terms of 〈 f 〉 and Q(t) appear-
ing in Eq. (19). If we use our simple exponential approxima-
tion for Q(t), they become

〈m2〉

2
=

t
〈1/ f 〉

+

(
〈 f 〉 − 〈1/ f 〉−1

)2

2(〈 f 2〉 − 〈 f 〉2)

(
1 − e−t/τ

)
, (36)

D(t)
a2 = 〈 f 〉 −

(
〈 f 〉 − 〈1/ f 〉−1

) (
1 − e−t/τ

)
, (37)

where the time constant τ is given by

τ =

(
〈 f 〉 − (〈1/ f 〉)−1

2(〈 f 2〉 − 〈 f 〉2)

)
.

It is straightforward to get expressions particular to the distri-
bution functions chosen. As expected, the mean square dis-
placement starts out linearly with slope twice the arithmetic
mean of the rates and ends up also linearly with slope twice
the harmonic mean of the rates. Correspondingly, the time
dependent diffusion constant decays from a higher to a lower
value.

There are a number of ways the above simple analysis can
be put to use to extract physical information. For instance,
the mean square displacement of a walker initially localized
at a single site will first grow linearly but then saturate to a
finite value at long times if there are broken bonds in the 1-d
infinite system. Broken bonds correspond to a ρ( f ) that has a
non-zero value at f = 0 which means that there are bonds at
which the transition rate is zero. In such a case, 1/〈1/ f 〉, the
harmonic mean of the rates, and consequently the long time
D(t), vanish. Equation (36) can then be used to extract the
value at which the mean square displacement saturates at long
times:

lim
t→∞
〈m2〉 =

〈 f 〉2

〈 f 2〉 − 〈 f 〉2
. (38)

This consequence of the exponential approximation (24) to
the memory is simply a case of the general EMT result

lim
t→∞
〈m2〉 = −2 lim

ε→0

dQ̃(ε)
dε

. (39)

This may be proved from the Laplace transform of the non-
delta part of the memory in Eq. (19) via a Taylor expansion:

F̃ (ε) = 〈 f 〉−Q̃(ε) =
1
〈1/ f 〉

−ε

[
dQ̃(ε)

dε

]
ε=0
−
ε2

2

[
d2Q̃(ε)

dε2

]
ε=0

...

In the presence of broken bonds in 1-d, the harmonic mean of
f ’s vanishes. Since the mean square displacement is twice the
double time integral of F (t), the limit ε → 0 and the use of an
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FIG. 3: Comparison of the exact (numerical) memory function with
the approximate EMT given by our formula (24) for a double-delta
distribution in which the concentration of the smaller of the rates is
0.9 and the ratio of the transition rates is 10. Plotted are the ex-
act memory function (solid line) and the exponential approximation
(dotted line). It is surprising how close the agreement is, given the
coarse nature of the approximation.

Abelian theorem establish Eq. (39) quite generally. If F (t) is
expressed via the exponential approximation (24), the general
result reduces to Eq. (38).

Despite what appears as an impressive agreement of the ex-
ponential approximation that we see displayed in Fig. 3 for
a double delta distribution with α = 0.9, and f2/ f1 = 10, the
approximation generally will not capture the actual decay in
time for all distribution functions and may be regarded only
as a highly simplified manner of description. For greater ac-
curacy than can be provided by the relatively coarse approxi-
mation of Eq. (24), it is necessary to return to the prescription
of Eq. (11), calculate F̃ (ε) through the solution of the implicit
equation, and then invert the transform to obtain the memory.
When the EMT memory is calculated in the Laplace domain
via our prescription based on Eq. (11), the derived quantities
D(t) and 〈m2〉 can be obtained very simply in the Laplace do-
main by dividing F̃ (ε) by ε and ε2 (except for proportionality
constants) respectively.

The calculation of F̃ from Eq. (11) is easy and analytically
doable for the double-delta distribution. Defining the quantity

η = (1 − α) f1 + α f2,

we get the soluble cubic

F̃ 3 − 2F̃ 2
(
2η2/ε + f1 + f2)

)
+F̃

(
8η f1 f2/ε +

(
2 f1 f2 + ( f1 + f2)2 − η2

))
−4 f 2

1 f 2
2 /ε − (2 f1 f2( f1 + f2) − 2η f1 f2) = 0. (40)

Standard analytic formulae lead to the appropriate solution
which can then be numerically Laplace-inverted. We have
carried out such a procedure in the next section.

10
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FIG. 4: Comparison of EMT predictions with exact results for three
disorder distributions ρ( f ). Plotted is the time-dependent diffusion
coefficient (normalized to its initial value) as a function of the di-
mensionless time τ = 〈 f 〉 t for three cases of ρ( f ) and a localized
initial condition. Solid lines are the effective medium results and
open circles correspond to the numerically exact results obtained by
averaging over 20000 different realizations of the disordered chain.
Dashed lines on the right show the asymptotic values of the diffusion
coefficient. From top to bottom, ρ( f ) is the double-delta distribution
with f1/ f2 = 0.5 and α = 0.5, a triangular distribtution with f0 = 0.3,
fb = 0.2, and a gamma distribution with n = 1.The agreement is
striking for all three cases, not only for extreme limits but for inter-
mediate times as well.

Similar procedures can be used for the gamma distribution
and the triangular distribution. Explicit polynomials do not
result for F̃ in those cases but the equations can be solved nu-
merically and inverted. We have carried out these procedures
for these two distributions as well and report the results after
inversions into the time domain using Eq. (16).

C. Comparison of EMT and Exact Solutions for All Times

We now display the results of the predictions of effective
medium theory and the numerically obtained exact evolution
not only for long times as is usually done, but for short and
intermediate times as well. For each distribution we calcu-
late the exact and the full EMT results. The exact results are
obtained via numerical matrix operations as explained else-
where in this paper. With the exception of single-run studies
to be reported further below, we repeat the operations tens of
thousands of times, each time using a different realization of
the chain. Then we average over all runs to produce the quan-
tity we desire. The effective medium theory prediction for that
quantity is also determined via the effective medium memory
function both in its full form as given from our Eq. (11), and
from our analytic approximation, Eq. (24).

We first treat the case when a single site is initially fully
occupied.
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1. Localized Initial Condition

Figs. 4 and 5 display the comparison graphically, the quan-
tity selected being the time-dependent diffusion coefficient
normalized to its initial value: D(t)/D(0). All three distribu-
tions are considered in Fig. 4. The agreement of the effective
medium theory (solid lines) with the exact evolution (open
circles) is remarkably good for all cases considered and for all
intermediate times as well. The description appears thus ex-
cellent for the parameters considered for times that need not
be asymptotic.

In order to explore parameter values for which the agree-
ment may not be as good, we restrict ourselves to the double-
delta distribution in (a) of Fig. 5, take the two possible rates
f1 and f2 to occur with equal weight (α = 0.5), but vary the
ratio: f1/ f2 = 0.5, 0.1, 0.01 as we go down the graph. EMT
is still found to provide a fine description for all times but de-
viates more as the rates become more disparate. To drive this
situation to an extreme where the EMT would serve worst, we
consider a broken bond system in (b) of Fig. 5. This means we
take f1 = 0 and f2 , 0 for different values of the concentra-
tion α. The large time value of D(t) is now zero and the mean
square displacement 〈m2〉 (proportional to the integral of D(t))
saturates. Physically, the saturation value measures the size of
clusters (separated by broken bonds from other clusters) on
which the walker is localized at long times. We have already
obtained analytic expressions for the saturation value from the
full EMT (in Eq. (39)) and from the exponential approxima-
tion (in Eq. (38)). Fig. 5b is an attempt at looking at EMT
in the worst possible light by comparing the time evolution of
〈m2〉 predicted by it to that given by exact calculations. We do
this for the broken bond case ( f1 = 0) for two concentrations α
of broken bonds: 0.01 and 0.1 as shown. The main display in
Fig. 5b shows the two 〈m2〉 curves. To make the discrepancy
of the saturation value particularly clear, we show the inset in
which the one case α = 0.01 is displayed on a semilogarith-
mic scale. The abscissa is the dimensionless time 〈 f 〉t as in
the main figure. The ordinate is 〈m2〉 on a linear scale, the
values displayed as 0.5 and 1 being 5000 and 10000 (i.e., in
units of 104). The accumulated values of the mean square dis-
placement, the localization cluster sizes, are 8.71x103 from
the exact calculations but only 5.00x103 from the EMT: both
are denoted by solid lines in the inset. The corresponding val-
ues for the α = 0.1 case are 88.6 and 49.5 respectively. The
exponential approximation to the EMT is way off as it pre-
dicts 99 for the α = 0.01 case and 9 for α = 0.1. (The latter
is denoted by a dotted line in the inset.) This is to be expected
from the crudeness of that approximation.

2. Extended Initial Conditions for Single Runs

An actual experiment in a real physical situation is per-
formed not on an ensemble but on an individual system. How
can EMT, which has at its root an ensemble average, pro-
vide a valid description for the experiment? Standard Gibbs-
Boltzmann arguments do not help as an answer here because
our interest in using EMT is not only for asymptotic times
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FIG. 5: Worst-case scenario comparison of EMT and exact results.
In (a) we plot the time-dependent diffusion coefficient (normalized
to its initial value) as a function of the dimensionless time τ = 〈 f 〉 t
for the double-delta distribution function for α = 0.5 and, from top
to bottom, f1/ f2 = 0.5, f1/ f2 = 0.1, f1/ f2 = 0.01. While good,
the agreement gets worse for disparate f ’s. To explore a regime in
which the agreement is bad, in (b) we consider two broken-bond sys-
tems (the ratio of the f ’s being zero and therefore extreme) with two
different concentrations α = 0.1, 0.01 as shown. Plotted is the mean
square displacement showing saturation at long times. Here f1 = 0
and f2 = 0.2. Open circles correspond to the exact (numerical) so-
lution obtained by averaging over 20000 different realizations of the
disordered chain which consists of 801 sites. Solid lines are theoret-
ical results from the EMT. The inset shows the α = 0.01 case, the
ordinate being on a linear scale in units of 104. See text for discus-
sion.

when the system might have completed the mixing process
but for all times. One possible answer to this question might
lie in the nature of the initial condition. If it is extended in
space, various configurations of transition rates in a random
system may be realized even at short times. With this idea
in mind we now describe our investigation of extended initial
conditions for single runs. In particular, we study the agree-
ment of EMT and single-run evolution of the actual system as
we vary the spatial extent of the initial condition.

We carry out calculations from exact numerical considera-
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FIG. 6: Relative difference between exact results and EMT, or error
of the EMT, for a single run. Plotted as large open circles is the
error (see text for definition) as a function of the number of sites
initially occupied, i.e., the value 2µ + 1. No averages are performed.
The error is seen to decrease as the initial width increases, allowing
the walker to sample different configurations. Inset: Comparison of
D(t)/D(0) curves for two different values of the initial width, µ = 5
(crosses) and µ = 50 (open circles), with the EMT (solid line). It
is clearly seen that EMT agrees with the simulations for spatially
extended initial conditions without averaging.

tions for systems of 801 sites without changing the configu-
rations of the transition rates once set in accordance with the
double-delta distribution, and take initial conditions that are
not of the form Pm(0) = δm,0, but of the extended form

Pm(0) =
1

2µ + 1

µ∑
r=−µ

δn,r

which represents a patch initial condition of spatial extent of
2µ + 1 sites. We call this the initial width. The limit µ = 0
gives us back the initial condition we have used in the studies
above. We find that larger patches result in smaller deviations
of the EMT predictions from the exact results.

The inset of Fig. 6 shows values of D(t)/D(0) for a single
configuration for two different values of the width (open cir-
cles represent µ = 50, crosses represent µ = 5) along side the
corresponding prediction of effective medium theory (solid
line). The integrated difference between the EMT result and
the exact results depicted in that inset (as plotted on a loga-
rithmic time scale) provides a convenient measure of the error.
We thus define, for each value of µ, a measure of the relative
error, through the expression

ER =

∫ ∞

−∞

DEMT (s) − DEX (t)
DEX (s)

ds

where s = ln (〈 f 〉t) . A plot of the (numerically evaluated)
relative error as a function of the initial width µ is presented
in the main graph in Fig. 6, and clearly shows that the relative
error decreases monotonically as the patch width increases.

3. Correlation Type Observables

There are, in general, different kinds of observables that can
be computed from the solution to the Master equation. Simple
observables O are those which associate with each site (state)
m, a value Om that the observable takes when the particle is in
that state. The mean value associated with such an observable
at any time t can then be written as

〈O (t)〉 =
∑

m

OmPm (t) =
∑
m,n

OmΨm,n (t) Pn (0) , (41)

where in the second form we have expressed the result in
terms of the propagators Ψ, and the initial probability distribu-
tion governing the particle’s occupation of the possible states
of the system. This can be put in the form

〈O (t)〉 =
∑

n

〈O (t)〉nPn (0) (42)

where

〈O (t)〉n =
∑

m

OmΨm,n (t) (43)

is the mean value of the observable given that the particle
started in state n at time t = 0. Simple observables can thus be
calculated by incorporating into the averaging process an av-
erage over the different possible starting locations of the par-
ticle.

Correlation type observables, also of great interest in sta-
tistical physics, do not correspond to (simple) observables of
this type. Indeed, they span two or more different states (or the
same state at two different times). An example is 〈A (t) B (0)〉
given by∑

m,n

AmΨm,n (t) BnPn (0) =
∑

n

〈A (t)〉nBnPn (0) . (44)

Here Am and Bm are, respectively, the values of A and B when
the particle is in the state m, and

〈A (t)〉n =
∑

m

AmΨm,n (t) (45)

is the mean value of A at time t if the particle started in state n
at t = 0. Consider, for instance A` with components

A`
m = δm,`. (46)

It is an indicator observable taking the value 1 if the particle
is at site ` and the value 0 otherwise. Then the correlation
function

〈A` (t) A`′ (0)〉 = Ψ`,`′ (t)P`′ (0) (47)

is just the propagator ψ`,`′ weighted by the relative initial prob-
ability of finding the particle in the state `′. This shows that
the propagators ψ`,`′ themselves can also be considered as ob-
servables of the system. Of course, in a specific disordered
system, the self-propagator ψ`,` (t) , e.g., will depend on the lo-
cation of site ` in the disordered chain. The effective medium



10

10
−2

10
0

10
2

0

0.2

0.4

0.6

0.8

1

〈f〉t

se
lf

pr
op

ag
at

or

 

 

FIG. 7: Effect of varying patch width of the initial condition. Plotted
is the time dependence of the self propagators in a disordered chain
(the same disordered chain is used in all of the calculations) whose
transfer rates are drawn from a double-delta distribution with f1/ f2 =

0.1 and α = 0.5. Self propagators at 401 sites, 200 to the left and 200
to the right of origin are calculated. The dashed line is the average
of all of the 401 self propagators obtained this way. The solid lines
correspond to averaging over 3, 9, 15 and 25 (from top to bottom) of
the self propagators around the origin.

propagator Ψ0 (t) may not, therefore give a good approxima-
tion to any given self-propagator ψ`,` (t) in any single realiza-
tion of the disordered system. We intuitively expect, however,
that self-propagators, averaged over an initial distribution of
starting positions on the same chain, will approach that of the
effective medium, as the width of the initial distribution of
starting sites is increased, i.e., that

lim
µ→∞

1
2µ + 1

µ∑
`=−µ

ψ`,` = Ψ0.

To verify this intuition, we present calculations in Fig. 7 of
the self-propagator averaged over such an initial distribution
of starting sites, for different values of µ = 3, 9, 15, and 25.
A comparison of the limiting curve with the predictions of
effective medium theory is given in Fig. 8.

V. SPATIALLY LONG RANGE MEMORIES

The original evolution equation that describes the disor-
dered system, Eq. (7), is local in time and nearest-neighbor
in the character of its transition rates. Given that effective
medium theory provides an approximate rather than exact de-
scription of the actual dynamics described by Eq. (7), one
may ask whether the introduction of non-locality in time in
the EMT should be accompanied by non-locality in space as
well. This is a natural question to pose because of the emer-
gence of spatially long range memories that were found long
ago [12, 13] when GME’s were calculated for quantum me-
chanical systems by a method of Eq. (6), similar in spirit to
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FIG. 8: Self propagators obtained from the disordered chain (nu-
merically, represented by the open circles), by the effective medium
theory (solid line) and from an ordered chain with transfer rates Fe f f

throughout (dashed line).

the one followed in the EMT. Stated differently, the question
we ask is whether the replacement of Eq. (7) by Eq. (8) with
nearest-neighbor transition memories is sufficient or whether
the latter should span longer distances. The answer is pro-
vided in this section.

Consider Eq. (7) solved for P̃m(ε), the Laplace transform
of the probability of occupation of the mth site in terms of the
matrix Aµ corresponding to the configuration µ (a particular
realization of the transition rates f throughout the system).
Carrying out the average over the configurations µ one gets a
translationally invariant situation:

P̃m(ε) =
∑

n

〈
1

ε + Aµ

〉
m−n

Pn(0). (48)

Performing a discrete Fourier transform, we get P̃k(ε)/Pk(0)
which we substitute in Eq. (6) to get the exact memory func-
tion:

Ãk =

〈
1

ε + A

〉k

− ε. (49)

Because the configuration average has been carried out al-
ready at this point, we do not display the superscript µ on the
A.

There is no guarantee whatsoever that the k-dependence of
Ãk is of the form (1 − cos k). The exact memories need not,
therefore, have nearest neighbor character. The nature of the
disorder will influence the k-dependence. It is therefore clear
that spatially long range memories will naturally develop, in
general, their precise form being determined by the particular
distribution ρ( f ).

The exact procedure is to be contrasted with the EMT pro-
cedure, which, as explained in Section 2, necessarily results
in the absence of spatially long range memories. This is so
because one assumes the memories to be nearest-neighbor in
character, and obtains them variationally.
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FIG. 9: Spatially long range memories obtained from exact numeri-
cal considerations plotted as a function of the Laplace variable. Units
on both axes are of 〈 f 〉. Plotted in (a) is the exact F̃1(ε) (solid line),
calculated for rings of 100 sites, and the almost identical EMT mem-
ory (open circles) along with the asymptotic rate 1/〈1/ f 〉 (dashed
line). Plotted in (b) on a scale blown up by almost 3 orders of mag-
nitude are the much smaller long range memories F̃n(ε) in dotted,
dashed and solid lines, for n = 2, 3, 4, respectively. The distribution
is double-delta with f1/ f2 = 0.1 and α = 0.5.

In Fig. (9) we display the result of the full numerical exact
procedure outlined above carried out on a chain of 801 sites,
making sure during each run that the value of Pm(t) is negli-
gible (comparable to the precision of the machine used) at the
boundaries of the chain. The distribution used is double-delta,
the two rates are in the ratio f1/ f2 = 0.1 and the concentration
of each is equal to the other. We plot in (a) the Laplace trans-
form of the nearest-neighbor memory obtained from the ex-
act procedure (solid line), F̃1(ε), as a function of the Laplace
variable ε, both the abscissa and the ordinate being expressed
in units of the average rate 〈 f 〉. Also plotted is the result of
the EMT procedure (dots) and the dashed line that represents
the asymptotic rate 1/〈1/ f 〉. There is hardly any difference
in the exact and the EMT result. What this must mean is
that the non-nearest neighbor memories must be much smaller

in magnitude relative to the nearest neighbor F̃1(ε). This is
shown clearly in (b) where the longer range memory trans-
forms, F̃n(ε), are shown. The scales in the plots in (a) and (b)
differ by a little less than 3 orders of magnitude so it is indeed
clear that the long-range memories are small. It is thus that
the EMT can successfully describe the evolution even though
it possesses only nearest-neighbor memories. Note that, while
F̃1(ε) is sigmoidal in shape, the long-range memories seem to
peak for intermediate ε and to be negligible for both large and
small ε.

VI. FINITE SIZE EFFECTS

To the best of our knowledge, effective medium consider-
ations have been used only on infinitely large systems in the
past. We present below useful EMT results for finite rings
of N sites, i.e., chains obeying periodic boundary conditions.
The self-propagator for such a system is given in the Laplace
domain by

ψ̃0(ε) =
1
N

∑
k

1
ε + 2F̃ (ε)(1 − cos k)

(50)

where k takes on the values (2π/N)[0, 1, 2, ...N − 1]. In the
long time limit, the self propagator ψ0(t) tends to 1/N as one
knows both from the explicit limit of Eq. (50) or from the
physical statement that the probability equalizes over the ring
sites. This means via an Abelian theorem that εψ̃0(ε) → 1/N
as ε → 0. The use of this limit in Eq. (12) leads to an impor-
tant long-time consequence of our general equation (11),

1
Fe f f

=
N

N − 1

∫ ∞

0
d f

ρ( f )
f + Fe f f ( 1

N−1 )
, (51)

which is an extension to finite systems of the well-known
harmonic mean result of Eq. (14). Here we have used
Fe f f = F̃ (ε → 0) as earlier. Equation (51) must be solved for
Fe f f implicitly and becomes explicit only as N → ∞ when
the Fe f f term within the integral disappears.

The implicit equation for the case of the double-delta dis-
tribution function of Eq. (25),

Fe f f =
N − 1

N

 α

f1 +
Fe f f

N−1

+
1 − α

f2 +
Fe f f

N−1

−1

,

can be converted into a quadratic equation and solved explic-
itly. With

j = f1(1 − N + Nα) + f2(1 − Nα),

one has

Fe f f =
j ±

√
j2 + 4(N − 1) f1 f2

2
. (52)

Normally, i.e., when both f1 and f2 are non-zero, there is a
unique solution as we discard the negative root because Fe f f
must be real.
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FIG. 10: Bifurcation of the effective long time transfer rate for a
double delta distribution in a finite system of N sites. Plotted is Fe f f

as a function of the concentration of broken bonds (i.e., bonds with
the rate f1 = 0), the rate associated with the remaining fraction 1 −
α of unbroken bonds being equal to f2. A transcritical bifurcation
occurs when α equals 1/N. For concentrations higher than this value,
the effective rate vanishes but changes linearly with the concentration
for lower α. Solid (dotted) lines denote the stable (unstable) solution.

If one of the two possible rates, e.g. f1, is zero, i.e., if bro-
ken bonds exist in the finite system, an interesting situation
arises, both roots being of physical interest. The lower root
is zero, not negative, in this case. If one varies the concentra-
tion α of the broken bonds, a transcritical bifurcation occurs
as displayed in Fig. 10 at the point at which α equals the
reciprocal of the number of sites in the ring. As this num-
ber increases, the bifurcation point moves towards vanishing
concentration. We recover the known result that, for an infi-
nite system, the effective rate is zero for any concentration of
broken bonds. Additionally, we get a percolation threshold for
finite systems. The two solutions exchange stability at the crit-
ical concentration (α = 1/N), there being transport throughout
the ensemble-averaged system for broken bond concentrations
below the critical value.

It is interesting to see how the effective medium nearest
neighbor memory function compares with the exact nearest
neighbor memory function as ε → ∞ in finite rings. One
can obtain the exact memory functions for a ring of N sites
through Eq. (49) by averaging over all possible configurations
of the ring. For simplicity, we will consider the double-delta
distribution with α = 1/2. For rings with N = 2, 3, 4, and 5
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FIG. 11: The behavior of the relative difference between the nearest
neighbor effective rates calculated from the EMT and an exact nu-
merical procedure (see text) as a function of f1/ f2 for a sum of two
delta functions with α = 0.5

sites we have the exact values, limε→0 F̃
EX

1 (ε)

F̃ EX
1 (0) =

N=2: 2 f2
r

r + 1
,

N=3: 8 f2
r(r + 2)(2r + 1)

(5r + 1)(r + 5)(r + 1)
,

N=4: 16 f2
r(1 + 3r)(3 + r)(r + 1)

124r(1 + r2) + 230r2 + 17(1 + r4)
,

N=5: 16 f2
r(3 + 2r)(2 + 3r)(1 + 4r)(4 + r)

(7 + 3r)(3 + 7r)(r + 1)(7 + 36r + 7r2)
. (53)

The effective medium memory function is given by Eq. (52)
with α = 1/2. In order to quantitatively examine how different
the exact and effective medium values are, we define a relative
difference as

1
f2

Fe f f − F̃
EX

1 (0)

F̃ EX
1 (0)

 ,
and plot it as a function of f1/ f2 in Fig. 11 for N = 3, 4, and
5. We find that the values predicted by the effective medium
theory are slightly different from the exact values. The relative
difference between the two decreases as the number of sites in
the ring becomes larger and larger. Therefore the effective
medium theory predicts the correct values in the limit ε → ∞
when N → ∞, but finite size effects exist otherwise. Note that
for finite N, effective medium theory always predicts larger
values than those that are calculated exactly.

VII. CONCLUDING REMARKS

The purpose of this paper is to make a contribution to the
description of transport of quasiparticles such as electrons,
excitons, atoms, interstitials, vacancies, or other more for-
mally regarded random walkers in a disordered system such
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as a solid, a photosynthetic system, or a molecular aggregate.
We have focussed our attention on incoherent motion as de-
scribed by a Master equation and have restricted our analysis
to nearest-neighbor transfer on a 1-dimensional chain, infi-
nite or finite obeying periodic boundary conditions (ring). Our
general goal is to translate information about static spatial dis-
order of the given system into dynamic temporal features of a
representative ordered system, to do it explicitly by convert-
ing distribution functions into memory functions, to study the
validity of predictions of the effective medium theory, and to
report several extensions we have made of the theory.

Starting with the spirit of effective medium theory used by
many [18–23, 26] as expressed through Eq. (9), we arrive at
a transparent prescription Eq. (11). The prescription is in the
form of a transform, is a natural generalization to all times of
well known results such as the harmonic mean recipe of Eq.
(14) for effective long time rates, and involves the solution
of an implicit equation for the Laplace transform of the EMT
memory.

We show how to obtain the memory in the time domain by
numerical inversions of the Laplace transform produced by
the solution of the implicit equation. Additionally we derive,
exactly, partial information about the memories. We provide
an understanding of the special feature of EMT memories that
it consists of two pieces of which one is a delta function. We
derive a simple approximate formula in the time domain, Eq.
(24), for the memory. It can provide a rough and sometimes
adequate representation of the exact evolution as Fig. 3 shows
for the particular distribution and parameter set that we have
used in that case. Lest one develop a false confidence in this
coarse approximation, we have shown Fig. 5b in which its
predictions for a broken bond system are quantitatively quite
different from the exact answers.

We use effective medium theory to go beyond an asymp-
totic description and compare the EMT description with exact
(numerically obtained) predictions. The quantity we choose
for comparison is the time-dependent diffusion coefficient
D(t) which is proportional to the time derivative of the mean
square displacement or equivalently to the time integral of the
memory function. Not only do we find excellent agreement at
long and short times as expected from previous work, but sur-
prisingly good agreement at intermediate results also. Figs. 4
and 5 show this clearly. We carry out this comparison in two
parts: by doing an ensemble average over initial conditions
for localized initial placement of the walker; and by doing a
single-run (no ensemble average over initial conditions) anal-
ysis for a spatially extended placement of the walker. The pur-
pose of the latter is to examine the validity of using ensembles
for single run situations in patch type initial placement. We
also carry out separately configuration averages of the exact
and EMT evolutions and find fine agreement. For this latter
purpose we choose the selfpropagator as the quantity to cal-
culate.

We also find that in contrast to the EMT treatment, the exact
replacement of the disordered system by the ordered system
with memory, outlined in the introduction and carried out in
detail in section 5, results in spatially long range memories
as in earlier analyses of quantum systems [12, 13]. This is in

spite of the fact that the original disordered system has only
nearest neighbor rates. We display these memories Fn which
connect a site to another, n sites away. We do this both in
the Laplace and the time domains, and find that the nearest
neighbor ones are typically larger by an order of magnitude
than the others. This explains the success of the EMT even
though its memories have only nearest neighbor character.

With the help of our formalism based on Eq. (11), we inves-
tigate finite size effects on effective medium theory and find
interesting new results: corrections depending on size appear
in the harmonic mean formula (14). A novel result emerges
involving a bifurcation of the effective long time rate of trans-
fer Fe f f as the concentration of broken bonds is varied. The
bifurcation is transcritical in nature, the vanishing solution for
Fe f f being stable for large concentration of the broken bonds
and the nonzero solution being stable for small concentrations
relative to a size-dependent critical value.

Thus, we have presented a number of extensions of effec-
tive medium theory in this paper. Not discussed here, but im-
portant to point out, are other recent extensions along a line
of research recently taken by two of the present authors in
their study of transport on small world networks, particularly
of the Neumann-Watts kind [37–39]. In those systems stan-
dard rings (finite chains with periodic boundary conditions)
with nearest neighbor hopping rates for the random walker
form the ordered part and additional small world connections
make up the disordered part. Of particular interest to the de-
velopments of the present paper is the use of effective medium
theory to develop memory functions that connect greater than
nearest-neighbor pairs. Indeed, to correctly describe transport
on small world networks, as well as on the partially disor-
dered complex networks of ref. [39], it is generally necessary
to include memory functions connecting all pairs of sites on
the network except nearest neighbors, in interesting contrast
to what we have shown here to be the case for the 1-d dis-
ordered chain. It is possible that the techniques developed to
understand complex networks can be applied to understand
the nature of the spatially long range memory functions for
disordered systems defined on topologically ordered lattices
of the sort we have considered in this paper.

In examining previous work in this field, we find impor-
tant avenues that were opened by the work of Haus and Kehr
[23–25]. Their approach appears to be similar to ours in spirit.
Prescriptions exist in their work for going from disorder to ex-
plicit forms of the GME or the CTRW. Furthermore, their use
of projection techniques [14] to the disorder problem includes
important considerations of the initial term [14, 15] which has
been often overlooked [10] in applications of this technique.
We have also carefully examined the question of the useful-
ness of the widely quoted analysis of ref. [10]. This question
is perhaps important given the absence in that analysis of a
practical prescription for obtaining a usable memory function
from a quantity describing disorder such as a rate distribution
function. Our answer is that ref. [10] helped stop the un-
justified concerns that some authors [40] seemed to have ex-
pressed about the applicability of the GME, equivalently the
CTRW, to disordered systems. Their message that GME’s or
CTRW’s are fully capable of treating disordered systems is
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correct and valuable. On the other hand, we have explained in
the Introduction to the present paper, how the correctness and
applicability of GME/CTRW’s can be understood without the
need for detailed argument. The real need is a practical pre-
scription for the translation of disorder features into the time
dependence of memories or pausing time distributions. The
development and use of such a prescription, already apparent
in early work [16, 24, 25], has been attempted in the present
paper.

In concluding, for the use of those who prefer to work
with CTRW’s rather than GME’s, we give explicit expressions
for the CTRW pausing time distribution functions in effective
medium theory. The situation here (in the EMT, not in the
exact system as can been seen in Fig. 9) is separable in time
and space, and so could be addressed by the formula in ref.
[6]. However we exploit the general relation given first by
Kenkre and Knox [7, 11] in Eq. (43) of the first of those refer-
ences or Eq. (30) of the second. Corresponding to the GME,
Eq. (8), the CTRW equation which is a sort of non-Markoffian
Chapman-Kolmogorov equation, becomes [11]

Pm(t) = Pm(0)
[
1 −

∫ t

0
dsΨ(s)

]
+

∫ t

0
ds

∑
n

Qmn(t − s)Pn(s)],

(54)

with

Q̃mn(ε) = (δm,n+1 + δm,n−1)
[
F̃ (ε)

ε + 2F̃ (ε)

]
,

Ψ̃(ε) =
2F̃ (ε)

ε + 2F̃ (ε)
. (55)

These formulae can be used after the determination of the
EMT memory in the various ways we have explained.
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