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We study bifurcations in a spatially extended nonlinear system representing population dynamics
with the help of analytic calculations based on the time-independent Schrödinger equation for a
quantum particle subjected to a uniform gravitational field. Despite the linear character of the
Schrödinger equation, the result we obtain helps in the understanding of the onset of abrupt
transitions leading to extinction of biological populations. The result is expressed in terms of Airy
functions and sheds light on the behavior of bacteria in a Petri dish as well as of large animals such
as rodents moving over a landscape.
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I. INTRODUCTION

The purpose of this paper is two-fold: to show how
standard Schrödinger equation analysis familiar in a sim-
ple physics situation may be used to understand an im-
portant problem in biology, and to study, via such an
analysis, the effect of spatial variation of resources on the
ecologically relevant problem of extinction of populations
of biological species. Extinction in biology is intimately
related, as we shall show below, to abrupt transitions in
physical systems, and is important whether the focus is
on the dynamics of bacteria in a Petri dish [1–6] or of the
movement of larger animals such as rodents involved in
the spread of epidemics [7–10].

Consider the logistic equation

du(t)

dt
= au(t) − bu2(t) (1)

which may describe the time dependence of the density
u of a spatially uniform population subject to a growth
rate a and a resource competition term controlled by the
parameter b. The steady state density undergoes a tran-
scritical bifurcation at a = 0, as a is varied from negative
to positive values. The physical meaning of the bifurca-
tion is straightforward. Whereas for positive a the stable
steady state value of u is a/b, for negative a the density
vanishes in the steady state because the growth rate is
then really a death rate. Introduction of space as a mere
parameter X brings in no new behavior.

A new aspect does enter, however, if spatial derivatives
are introduced into Eq. (1) through, for instance, diffu-
sion terms which represent the motion of the members of
the species from one spatial location to another. It is this
situation, represented by a Fisher equation [11, 12]with
spatially varying growth rate a(X) and diffusion constant
D,

∂u(X, t)

∂t
= a(X)u(X, t) − bu2(X, t) + D

∂2u(X, t)

∂X2
(2)

that is the subject of the present paper. We study the
1-d case for simplicity. As expected, the steady state
u(X) has a tendency to follow the spatial variation of
the growth rate a(X) but is modified by the effects of
diffusion. For instance, if a(X) has the value a in a seg-
ment of space, and the value −∞ outside it, as shown
first by Skellam [13], u(X) is given by the square of the
elliptic cd function [5, 13] . Thus u(X), which is maxi-
mum at the center of the favorable region and drops off
gradually towards the edges, is not proportional to a(X).
The latter has the shape of a step function.

Equation (2), which has been quite successful in the
description of ecological dynamics [11, 12], predicts in-
teresting behavior in addition to the mere difference in
shapes of a(X) and u(X). The maximum value um of the
density within the favorable region, i.e., the spatial seg-
ment in which a(X) is positive, naturally depends on the
length L of the segment, and decreases if L is decreased.
What is striking is that there is a minimum value of L
below which um, and therefore the density throughout,
vanishes identically. This minimum (critical) value can
be obtained, except for a proportional constant equal to
π2, by equating the growth time 1/a to the diffusion time
L2/D:

L = Ls = π

√

D

a
. (3)

The underlying physical idea is that the critical length of
the favorable segment corresponds to the situation that
the random walker (bacterium or animal) traverses the
length of the segment diffusively in the time necessary
for growth, and falls prey to the harsh conditions outside
the segment.

Our interest in the present paper is to ask how this
well-known result [5, 12, 13] is modified by the simulta-
neous introduction of two items of realism into the growth
a(X): a gradual, rather than step-like, spatial variation
of the growth rate at the border of the segment, and
a non-infinite value for destruction outside the segment.
The latter, by itself, has been analyzed earlier [14] but
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the former has not, to the best of our knowledge. We
provide an analysis of the combined situation below on
the basis of wave function calculations from the time-
independent Schrödinger equation describing a quantum
particle in a uniform gravitational or electrostatic field.

The analysis we present is applicable to at least two
specific biological systems that have been studied re-
cently: a bacterial population in a Petri dish, and rodents
responsible for Hantavirus infection spread. In several
experiments [1, 2] on the former system, the bacterial
population is bathed in the presence of deadly ultravio-
let radiation, except in a localized region covered with a
mask that protects the bacteria. The growth rate a(X)
is positive in the protected region and negative outside.
In observations of the second system, there are patches
of resources which make possible population growth and
sustainance of rodents such as mice in parts of the land-
scape but not beyond those patches. Earlier analyses
have treated the patches or the masks to correspond to
sharply changing resources. The real experimental sit-
uation is naturally different. The ultraviolet light that
falls on the mask seeps under the edges of the mask. As
a consequence, the change in the growth rate is gradual
rather than sudden. Similarly, the available water and
food in the rodent patches change gradually in the land-
scape. Transitions have been reported in experiments on
the bacterial system [2] following quantitative predictions
made earlier [5]. Transitions also seem to be present in
rodent experiments although the observations are more
difficult to unravel. The observational relevance of our
present investigation should be, thus, clear in both cases.

The paper is set out as follows. A simple model that
incorporates a gradual variation of resources in space is
presented in section 2 and analytical formulae are derived
in terms of Airy functions. Limits are studied in section
3 and concluding remarks appear in section 4.

II. MODEL AND THE RESULT

The model we analyze is as given in Eq. (2) with the
growth rate a(X) as in Fig.1. It equals the constant a for
a spatial segment of length L around the origin X = 0,
and drops gradually (linearly) to the constant negative
value −a1 outside the segment, the spatial variation be-
ing linear (constant slope). During the linear drop, the
rate remains positive on either side of the segment for an
additional distance R as shown. Using the suffixes 1, 2
and 3 for the respective regions I, II and III in Fig.1, we

have

∂u1(X, t)

∂t
= D

∂2u1(X, t)

∂X2
+ au1(X, t) − bu2

1
(X, t),

∂u2(X, t)

∂t
= D

∂2u2(X, t)

∂X2
+ a

(

1 − 2X − L

2R

)

u2(X, t)

−bu2

2(X, t),

∂u3(X, t)

∂t
= D

∂2u3(X, t)

∂X2
− a1u3(X, t) − bu2

3
(X, t). (4)

We do not attempt to solve either this nonlinear par-
tial differential equation or the corresponding nonlinear
ordinary differential equation for the steady state u(X)
obtained by setting the time derivative equal to zero.
Rather, we argue that, because our interest lies only in
the extinction phenomenon, i.e., the vanishing of u(X),
we can eliminate the bilinear terms of the density, and
match solutions of the ensuing linear equation across the
interfaces of the three regions I, II and III (see Fig. 1).
This argument appears to have been given first by Lud-
wig et al. [14] in his investigations of the spatial pat-
terning of the budworm. It has been used recently by
the present authors to propose double-mask experiments
for the bacterial problem [6]. The crux of the argument
is that, at the transition, the densities vanish and there-
fore terms of order higher than the first may be safely
neglected even while the linear terms are compared to
extract the extinction condition. The critical value of L
signifying extinction which result for any positive b can
therefore be calculated precisely by considering the lin-
ear equation obtained by putting b equal to zero. The
problem we are presented with here is simply of finding
of the wavefunction for a time-independent Schrödinger
equation of a quantum particle in a potential which is
linear in X as in the case of a uniform gravitational or
electrostatic field.

Defining the dimensionless position x and the quan-
tities l and r, all obtained by dividing X , L/2, and R

respectively by the diffusion length
√

D/a, we focus on
the linear steady state counterpart of Eq. (4), with the

notation ξ =
√

a1/a:

d2u1(x)

dx2
+ u1(x) = 0,

d2u2(x)

dx2
+

(

1 − x − l

r

)

u2(x) = 0,

d2u3(x)

dx2
− ξ2u3(x) = 0. (5)

The growth rate plays the role of the potential in a 1-
dimensional quantum mechanical problem in a constant
force field. The first of these equations is solved trivially
in terms of trigonometric functions, the third in terms of
exponentials, and the second in terms of Airy functions.

Specifically, using the fact that the system has sym-
metry about x = 0, the solution in the three regions is
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FIG. 1: The spatial dependence of the growth rate a(X) show-
ing its value as the constant a in a segment of length L joined
through a linear decrease to the value −a1 on both sides. The
width of the transition region is R on either side.

given by

u1(x) = A1cos(x),

u2(x) = A2Ai

[

−r2/3

(

1 − x − l

r

)]

+B2Bi

[

−r2/3

(

1 − x − l

r

)]

,

u3(x) = A3e
−ξx, (6)

where Ai and Bi are Airy functions and the A’s and
B2 are constants to be determined from the boundary
conditions.

Matching the logarithmic derivative of the solutions
across the interfaces and introducing η = r1/3 for nota-
tional convenience, we arrive at the following condition
for extinction.

tan l =

(

1

η

)

(

Ai′(ξ2η2)Bi′(−η2) − Ai′(−η2)Bi′(ξ2η2) + ξη
[

Ai(ξ2η2)Bi′(−η2) − Bi(ξ2η2)Ai′(−η2)
]

Ai(−η2)Bi′(ξ2η2) − Ai′(ξ2η2)Bi(−η2) + ξη [Ai(−η2)Bi(ξ2η2) − Ai(ξ2η2)Bi(−η2)]

)

. (7)

Primes denote derivatives. The normalized extinction
length l = L/

√

D/a is the arctangent of the right hand
side if the latter is positive, and is zero otherwise.

Equation (7) is the central result of this paper. The
crucial parameters in the expression are η which mea-
sures the transition region relative to the diffusion length
and ξ which measures the death rate outside, relative to
the growth rate inside, the segment. As is clear from
the expression, the second parameter can also be chosen
naturally as the product ξη .

III. LIMITING CASES

If the transition region vanishes (r = 0), we take the
limit η → 0 in Eq. (7) and recover the Ludwig formula
[14]

L = Ld = 2

√

D

a
arctan

√

a1

a
. (8)

In the general case r 6= 0, the extinction value normal-
ized to this Ludwig value is given by plotting the analytic
expression in Eq. (7). Fig. 2 shows, in the form of the

solid line in the main figure, this dependence of L/Ld on
r, the normalized extent of the transition region, for a
specific value of ξ, viz., 3. The solid circles are obtained
via the numerical solution of the full nonlinear equation
(4), for a nonzero b = 1 in appropriate units. Note that
Eq. (4) cannot be solved analytically, and that the com-
plete agreement between the numerical results from the
nonlinear equation (whatever the value of b) and the an-
alytic result from the linear extinction analysis (that has
no b) vindicates our theoretical procedure.

Various limiting cases may be studied from our Eq.
(7) through ascending and asymptotic expansions of the
Airy functions. An example of the former is [16, 17]

Ai(x) = c1f(x) − c2g(x),

Bi(x)√
3

= c1f(x) + c2g(x), (9)

where,

f(x) = 1 +
1

3!
x3 +

1.4

6!
x6 + ...

g(x) = x +
2

4!
x4 +

2.5

7!
x7 + ....
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FIG. 2: Excellent agreement between our Airy extinction pre-
diction formula (7) based on the linear theory (solid line) and
the numerical solution of the full nonlinear equation (circles).
Plotted in the main figure is the extinction length normalized
to the Ludwig value, L/Ld, versus the extent of the transition
region r for ξ = 3.0. The inset shows steady state density pro-
files corresponding to three different values of L larger than
the critical, for ξ = 3.0 and r = 0.4. Distance x is expressed in
units of diffusion length

p

D/a while the steady state density
u(x) is expressed in units of a/b. The density decreases as the
patch length decreases and vanishes at the critical value, at
which L/Ld = 0.398.
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FIG. 3: Generalization of the Skellam result (3) in the pres-
ence of a transition region of extent R. We plot L/Ls as a

function of r = R/
p

D/a. The solid line is the exact result
(Eq. 10) and the dashed line the approximation retaining the

lowest power of r1/3. Note that L = 0 for r > 1.028.

and c1 = Ai(0), c2 = Ai′(0).

One of the goals of the present paper is the gener-
alization of the Skellam result (3) in the presence of a
transition region. For this, we let ξ → ∞ in (7) and
obtain

L = 2

√

D

a
arctan

[

− 1

r1/3

Ai′(−r2/3)

Ai(−r2/3)

]

. (10)

We divide Eq. (10) by the Skellam result (3), and plot
L/Ls as a function of the transition region extent (i.e.,

r = R/
√

D/a) in Fig. 3. The exact expression is the
solid line. It is approximated reasonably well for small r

by the ascending series approximation

L =

√

D

a

(

π − 2cr1/3

)

denoted by a dashed line, with c = −Ai(0)/Ai′(0) =
1.372. Important to note is that the exact L becomes
zero at a finite value of the transition region extent (at
r = 1.028). This follows from the existence of a zero of
Ai′(−r2/3) at finite r; the physical significance is com-
mented on below.
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FIG. 4: Our analytic predictions for the dependence of the
extinction length L (in units of

p

D/a) on the transition re-
gion extent in (a) and against the ration of the death to the
growth rate in (b), plotted from the Airy function formula
Eq. (7). Note the threshold values of 1/r and ξ below which
extinction does not occur.

The extinction length L given by the exact expression
(7) is plotted in Fig. 4 against (a) the reciprocal of the
transition region extent, 1/r, for different values of ξ as
shown, and (b) the square root of the ratio of the death
rate to the growth rate, ξ for different values of r. The
extinction length becomes zero for large enough r in (a)
and small enough ξ in (b). This means that there is no
extinction for r > rc and ξ < ξc where rc and ξc are the
threshold values. These threshold values are plotted in
Fig. 5 directly from the graphs. We have verified that the
curves coincide precisely with those obtained by putting
the numerator of Eq. (7) equal to zero.
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FIG. 5: Plots of threshold values ξc and rc obtained graphi-
cally. They are found to agree with the prediction of Eq. (7)
obtained by putting its numerator equal to zero.

This vanishing of the extinction length L, signify-
ing that the extinction phenomenon disappears for large
enough transition region or small enough death rate,
stems from the definition of L as the top segment of the
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a(x) trapezoid in Fig. 1. Thus, Fig. 6 shows with this
segment of zero extent (L = 0) that the favorable patch
is still wide enough to make possible for the walkers to
survive in the protected patch because of the transition
region.

−a1 −a1

0 X

a(x)

a
(L=0)

FIG. 6: Situation where L = 0, there being no extinction
because the transition region itself provides a large enough
favorable patch for survival.

IV. CONCLUSION

Our focus in this paper has been to study the combined
effect of a gradual change in resources at the borders of a
patch, and of finite death rates outside the patch, on the
extinction transition of bacteria in a Petri dish, rodents
in a landscape, or of similar random walkers that can
move over an inhomogeneous spatial region. Although

the system is essentially nonlinear, and the extinction
transition is a consequence of the nonlinearity (coupled
to the inhomogeneity), we have been successful in ob-
taining exact solutions through an analytic procedure.
The procedure draws on an analogy to the solution of a
time-independent Schrödinger equation and results in an
expression for the critical length of the patch in terms of
Airy functions and their derivatives.

Our central result is Eq. (7). One of the crucial pa-
rameters is η which is r1/3, where r is the length of the
transition region in units of the diffusion length

√

D/a.
The appearance of the latter is natural since the under-
lying process is the movement of the random walker (the
diffusing entity) from within the favorable patch to the
unfavorable space outside within the growth time. The
emergence of the third power is a consequence of the Airy
function which arises from the linear dependence of the
gradual decrease of the resources.

The other quantity of importance is the ratio of the
death rate outside the patch to the growth rate inside,
specifically ξ =

√

a1/a. This second parameter can also

be taken to be the combination ξη =
√

r2/3a1/a. We
have recovered the Skellam result Eq. (3) and given its
generalization in Eq. (10). We have also recovered the
Ludwig result and provided its generalization as well.

This work was supported in part by the NSF under
grant no. INT-0336343, and by NSF/NIH Ecology of
Infectious Diseases under grant no. EF-0326757.

[1] A. L. Lin, B. Mann, G. Torres, B. Lincoln, J. Kas, and
H. L. Swinney, Biophys. J. 87, 75 (2004); see also A.
L. Lin in Modern Challenges in Statistical Mechanics:

Patterns, Growth, and the Interplay of Nonlinearity and

Complexity, eds. V. M. Kenkre and K. Lindenberg, AIP,
New York (2003).

[2] N. Perry, J. R. Soc. Interface 2, 379 (2005).
[3] K. A. Dahmen, D. R. Nelson, N. M. Shnerb, J. Math.

Biol. 41, 1 (2000).
[4] N. M. Shnerb, Phys. Rev. E 63, 011906 (2000).
[5] V. M. Kenkre and M. N. Kuperman, Phys. Rev. E 67,

051921 (2003).
[6] V.M. Kenkre and Niraj Kumar, Nonlinearity in Bacte-

rial Population Dynamics: Proposal for Experiments for

the Observation of Abrupt Transitions in Patches, Proc.
Natl. Acad. Sci. U.S.A., Accepted for publication.

[7] T. L.Yates, J. N. Mills, C. A. Parmenter, T. G. Ksiazek,
R. R. Parmenter, J. R. Vande Castle, C. H. Calisher, S.
T. Nichol, K. D. Abbott, J. C. Young, M. L. Morrison, B.
J. Beaty, J. L. Dunnum, R. J. Baker, J. Salazar-Bravo,

and C. J. Peters. Bioscience 52, 989-998 (2002).
[8] G. Abramson and V. M. Kenkre, Phys. Rev. E 66, 011912

(2002).
[9] V. M. Kenkre, L. Giuggioli, G. Abramson, and G.

Camelo-Neto, Europhysics J. B 55, 461 (2007).
[10] C. Escudero, J. Buceta, F. J. de la Rubia, K. Lindenberg,

Phys. Rev. E 69, 021908 (2004).
[11] J. D. Murray, Mathematical Biology, 2nd edn, New York,

Springer(1993).
[12] M. Kot, Elements of Mathematical Ecology (Cambridge

University Press, Cambridge, U. K., 2003).
[13] J. G. Skellam, Biometrika 38, 196 (1951).
[14] D. Ludwig, D. G. Aronson, H. F. Weinberger, J. Math.

Biol. 8, 217 (1979).
[15] R. A. Fisher, Ann. Eugen, London 7, 355-369(1937).
[16] M. Abramowitz and I. A. Stegun, Handbook of Mathe-

matical Functions (Dover, N. Y., 1972).
[17] O. Vallee and M. Soares, Airy Functions and Applications

to Physics (Imperial College Press, London, U. K.,2004)


